
Package: rjd3toolkit (via r-universe)
September 8, 2024

Type Package

Title Utility Functions around 'JDemetra+ 3.0'

Version 3.2.4.9000

Description R Interface to 'JDemetra+ 3.x'
(<https://github.com/jdemetra>) time series analysis software.
It provides functions allowing to model time series (create
outlier regressors, user-defined calendar regressors, UCARIMA
models...), to test the presence of trading days or seasonal
effects and also to set specifications in pre-adjustment and
benchmarking when using rjd3x13 or rjd3tramoseats.

Depends R (>= 4.1.0)

Imports RProtoBuf (>= 0.4.20), rJava (>= 1.0-6), checkmate, methods

SystemRequirements Java (>= 17)

License file LICENSE

URL https://github.com/rjdverse/rjd3toolkit,

https://rjdverse.github.io/rjd3toolkit/

LazyData TRUE

Suggests knitr, rmarkdown

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

BugReports https://github.com/rjdverse/rjd3toolkit/issues

Encoding UTF-8

Collate 'utils.R' 'jd2r.R' 'protobuf.R' 'arima.R' 'calendars.R'
'calendarts.R' 'decomposition.R' 'differencing.R' 'display.R'
'distributions.R' 'generics.R' 'jd3rslts.R'
'modellingcontext.R' 'procresults.R' 'regarima_generic.R'
'regarima_rslts.R' 'spec_benchmarking.R' 'spec_regarima.R'
'splines.R' 'tests_regular.R' 'tests_seasonality.R'
'tests_td.R' 'timeseries.R' 'variables.R' 'zzz.R'

VignetteBuilder knitr

1

https://github.com/jdemetra
https://github.com/rjdverse/rjd3toolkit
https://rjdverse.github.io/rjd3toolkit/
https://github.com/rjdverse/rjd3toolkit/issues

2 Contents

Repository https://tanguybarthelemy.r-universe.dev

RemoteUrl https://github.com/rjdverse/rjd3toolkit

RemoteRef HEAD

RemoteSha 1d60277dafc477069e3f548d3c76bf645075b08c

Contents
.r2jd_tsdata . 4
add_outlier . 9
add_usrdefvar . 10
aggregate . 12
arima_difference . 13
arima_model . 14
arima_properties . 14
arima_sum . 15
autocorrelations . 16
calendar_td . 16
chained_calendar . 18
clean_extremities . 19
compare_annual_totals . 20
data_to_ts . 20
daysOf . 21
density_chi2 . 21
density_gamma . 22
density_inverse_gamma . 22
density_inverse_gaussian . 23
density_t . 23
deprecated-rjd3toolkit . 24
diagnostics . 24
dictionary . 25
differences . 25
differencing_fast . 26
do_stationary . 27
easter_dates . 27
easter_day . 28
easter_variable . 29
fixed_day . 30
fixed_week_day . 31
holidays . 32
intervention_variable . 33
jd3_print . 35
likelihood . 36
ljungbox . 36
long_term_mean . 37
lp_variable . 38
mad . 39
modelling_context . 40

Contents 3

national_calendar . 41
normality_tests . 42
outliers_variables . 43
periodic.dummies . 44
periodic_splines . 45
print.calendars . 45
r2jd_calendarts . 46
ramp_variable . 47
rangemean_tstat . 48
reload_dictionaries . 49
runstests . 49
sadecomposition . 50
sarima_decompose . 51
sarima_estimate . 52
sarima_hannan_rissanen . 52
sarima_model . 53
sarima_properties . 54
sarima_random . 55
sa_preprocessing . 55
seasonality_canovahansen . 56
seasonality_canovahansen_trigs . 57
seasonality_combined . 57
seasonality_f . 58
seasonality_friedman . 59
seasonality_kruskalwallis . 59
seasonality_periodogram . 60
seasonality_qs . 61
set_arima . 61
set_automodel . 63
set_basic . 66
set_benchmarking . 67
set_easter . 68
set_estimate . 70
set_outlier . 72
set_tradingdays . 73
set_transform . 76
single_day . 78
special_day . 79
statisticaltest . 80
stock_td . 81
td . 82
td_canovahansen . 83
td_f . 84
to_ts . 85
to_tscollection . 85
trigonometric_variables . 86
tsdata_of . 87
tsmoniker . 87

4 .r2jd_tsdata

ts_adjust . 88
ts_interpolate . 88
ucarima_canonical . 89
ucarima_estimate . 90
ucarima_model . 90
ucarima_wk . 91
weighted_calendar . 92

Index 94

.r2jd_tsdata Java Utility Functions

Description

These functions are used in all JDemetra+ 3.0 packages to easily interact between R and Java
objects.

Usage

.r2jd_tsdata(s)

.r2jd_tsdomain(period, startYear, startPeriod, length)

.jd2r_tsdata(s)

.jd2r_mts(s)

.jd2r_lts(s)

.jd2r_matrix(s)

.r2jd_matrix(s)

.jdomain(period, start, end)

.enum_sextract(type, p)

.enum_sof(type, code)

.enum_extract(type, p)

.enum_of(type, code, prefix)

.r2p_parameter(r)

.p2r_parameter(p)

.r2jd_tsdata 5

.r2p_parameters(r)

.r2p_lparameters(r)

.p2r_parameters(p)

.p2r_parameters_rslt(p)

.p2r_parameters_rsltx(p)

.p2r_test(p)

.p2r_matrix(p)

.p2r_tsdata(p)

.r2p_tsdata(r)

.p2r_parameters_estimation(p)

.p2r_likelihood(p)

.p2r_date(p)

.r2p_date(s)

.p2r_span(span)

.r2p_span(rspan)

.p2r_arima(p)

.p2r_ucarima(p)

.p2r_spec_sarima(spec)

.r2p_spec_sarima(r)

.p2r_outliers(p)

.r2p_outliers(r)

.p2r_sequences(p)

.r2p_sequences(r)

.p2r_iv(p)

6 .r2jd_tsdata

.r2p_iv(r)

.p2r_ivs(p)

.r2p_ivs(r)

.p2r_ramps(p)

.r2p_ramps(r)

.p2r_uservars(p)

.r2p_uservars(r)

.p2r_variables(p)

.p2r_sa_decomposition(p, full = FALSE)

.p2r_sa_diagnostics(p)

.p2r_spec_benchmarking(p)

.r2p_spec_benchmarking(r)

.r2jd_sarima(model)

.jd2r_ucarima(jucm)

.p2jd_calendar(pcalendar)

.r2p_calendar(r)

.proc_numeric(rslt, name)

.proc_vector(rslt, name)

.proc_int(rslt, name)

.proc_bool(rslt, name)

.proc_ts(rslt, name)

.proc_str(rslt, name)

.proc_desc(rslt, name)

.proc_test(rslt, name)

.r2jd_tsdata 7

.proc_parameter(rslt, name)

.proc_parameters(rslt, name)

.proc_matrix(rslt, name)

.proc_data(rslt, name)

.proc_dictionary(name)

.proc_dictionary2(jobj)

.proc_likelihood(jrslt, prefix)

.r2p_moniker(r)

.p2r_moniker(p)

.r2p_datasupplier(name, r)

.p2r_metadata(p)

.r2p_metadata(r, type)

.p2r_ts(p)

.r2p_ts(r)

.p2r_tscollection(p)

.r2p_tscollection(r)

.r2jd_ts(s)

.jd2r_ts(js)

.r2jd_tscollection(s)

.jd2r_tscollection(js)

.p2r_datasupplier(p)

.r2p_datasuppliers(r)

.p2r_datasuppliers(p)

.p2jd_variables(p)

8 .r2jd_tsdata

.jd2p_variables(jd)

.jd2r_variables(jcals)

.r2jd_variables(r)

.p2r_context(p)

.r2p_context(r)

.p2jd_context(p)

.jd2p_context(jd)

.jd2r_modellingcontext(jcontext)

.r2jd_modellingcontext(r)

.p2r_calendars(p)

.r2p_calendars(r)

.p2jd_calendars(p)

.jd2p_calendars(jd)

.jd2r_calendars(jcals)

.r2jd_calendars(r)

.jd3_object(jobjRef, subclasses = NULL, result = FALSE)

.p2r_regarima_rslts(p)

.r2jd_tmp_ts(s, name)

.r2jd_make_ts(source, id, type = "All")

.r2jd_make_tscollection(source, id, type = "All")

DATE_MIN

DATE_MAX

add_outlier 9

Arguments

p, r, spec, model, jucm, start, end, name, s, period, startYear, startPeriod,
length, type, code, prefix, span, rspan, full, rslt, jobj, jrslt, jd,
jcontext, jobjRef, subclasses, result, pcalendar

parameters.

Format

An object of class Message of length 3.

An object of class Message of length 3.

add_outlier Manage Outliers/Ramps in Specification

Description

Generic function to add outliers or Ramp regressors (add_outlier() and add_ramp()) to a speci-
fication or to remove them (remove_outlier() and remove_ramp()).

Usage

add_outlier(x, type, date, name = sprintf("%s (%s)", type, date), coef = 0)

remove_outlier(x, type = NULL, date = NULL, name = NULL)

add_ramp(x, start, end, name = sprintf("rp.%s - %s", start, end), coef = 0)

remove_ramp(x, start = NULL, end = NULL, name = NULL)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).
type, date type and date of the outliers. Possible type are: "AO" = additive, "LS" = level

shift, "TC" = transitory change and "SO" = seasonal outlier.
name the name of the variable (to format print).
coef the coefficient if needs to be fixed. If equal to 0 the outliers/ramps coefficients

are estimated.
start, end dates of the ramp regressor.

Details

x specification param must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()). If a Seasonal adjustment process is performed, each type of
Outlier will be allocated to a pre-defined component after the decomposition: "AO" and "TC" to
the irregular, "LS" and Ramps to the trend.

10 add_usrdefvar

References

More information on outliers and other auxiliary variables in JDemetra+ online documentation:
https://jdemetra-new-documentation.netlify.app/

See Also

add_usrdefvar, intervention_variable

Examples

init_spec <- rjd3x13::x13_spec("RSA5c")
new_spec<-rjd3toolkit::add_outlier(init_spec, type="AO", date="2012-01-01")
ramp on year 2012
new_spec<-rjd3toolkit::add_ramp(init_spec,start="2012-01-01",end="2012-12-01")

add_usrdefvar Add a User-Defined Variable to Pre-Processing Specification.

Description

Function allowing to add any user-defined regressor to a specification and allocate its effect to a
selected component, excepted to the calendar component. To add user-defined calendar regressors,
set_tradingdays. Once added to a specification, the external regressor(s) will also have to be
added to a modelling context before being used in an estimation process. see modelling_context
and example.

Usage

add_usrdefvar(
x,
group = "r",
name,
label = paste0(group, ".", name),
lag = 0,
coef = NULL,
regeffect = c("Undefined", "Trend", "Seasonal", "Irregular", "Series",
"SeasonallyAdjusted")

)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).

group, name the name of the regressor in the format "group.name", by default "r.name" by
default if group NULL "group.name" has to be the same as in modelling_context
(see examples)

label the label of the variable to be displayed when printing specification or results.
By default equals to group.name.

https://jdemetra-new-documentation.netlify.app/

add_usrdefvar 11

lag integer defining if the user-defined variable should be lagged. By default (lag =
0), the regressor xt is not lagged. If lag = 1, then xt−1 is used.

coef the coefficient, if needs to be fixed.

regeffect component to which the effect of the user-defined variable will be assigned. By
default ("Undefined"), see details.

Details

x specification param must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()). Components to which the effect of the regressor can be allo-
cated:

• "Undefined" : the effect of the regressor is assigned to an additional component, the vari-
able is used to improve the pre-processing step, but is not removed from the series for the
decomposition.

• "Trend": after the decomposition the effect is allocated to the trend component, like a Level-
Shift

• "Irregular": after the decomposition the effect is allocated to the irregular component, like an
Additive-outlier.

• "Seasonal": after the decomposition the effect is allocated to the seasonal component, like a
Seasonal-outlier

• "Series": after the decomposition the effect is allocated to the raw series: yct = yt + effect

• "Seasonally Adjusted": after the decomposition the effect is allocated to the seasonally ad-
justed series: sat = T + I + effect

References

More information on outliers and other auxiliary variables in JDemetra+ online documentation:
https://jdemetra-new-documentation.netlify.app/

See Also

set_tradingdays, intervention_variable

Examples

creating one or several external regressors (TS objects),
which will be gathered in one or several groups
iv1<-intervention_variable(12, c(2000, 1), 60,
starts = "2001-01-01", ends = "2001-12-01")
iv2<- intervention_variable(12, c(2000, 1), 60,
starts = "2001-01-01", ends = "2001-12-01", delta = 1)
configuration 1: regressors in the same default group (named "r")
variables<-list("iv1"=iv1, "iv2"=iv2)
to use those regressors, input : name=r.iv1 and r.iv2 in add_usrdefvar function
configuration 2: group names are user-defined

https://jdemetra-new-documentation.netlify.app/

12 aggregate

here: regressors as a list of two groups (lists) reg1 and reg2
vars<-list(reg1=list(iv1 = iv1),reg2=list(iv2 = iv2))
to use those regressors, input : name=reg1.iv1 and name=reg2.iv2 in add_usrdefvar function
creating the modelling context
my_context<-modelling_context(variables=vars)
customize a default specification
init_spec <- rjd3x13::x13_spec("RSA5c")
regressors have to be added one by one
new_spec<- add_usrdefvar(init_spec,name = "reg1.iv1", regeffect="Trend")
new spec<- add_usrdefvar(new_spec,name = "reg2.iv2", regeffect="Trend", coef=0.7)
modelling context is needed for the estimation phase
sa_x13<- rjd3x13::x13(ABS$X0.2.09.10.M, new_spec, context = my_context)

aggregate Aggregation of time series

Description

Makes a frequency change of this series.

Usage

aggregate(
s,
nfreq = 1,
conversion = c("Sum", "Average", "First", "Last", "Min", "Max"),
complete = TRUE

)

Arguments

s the input time series.

nfreq the new frequency. Must be la divisor of the frequency of s.

conversion Aggregation mode: sum ("Sum"), average ("Average"), first observation ("First"),
last observation ("Last"), minimum ("Min"), maximum ("Max").

complete Boolean indicating if the observation for a given period in the new series is set
missing if some data in the original series are missing.

Value

A new time series of frequency nfreq.

arima_difference 13

Examples

s = ABS$X0.2.09.10.M
Annual sum
aggregate(s, nfreq = 1, conversion = "Sum") # first and last years removed
aggregate(s, nfreq = 1, conversion = "Sum", complete = FALSE)
Quarterly mean
aggregate(s, nfreq = 4, conversion = "Average")

arima_difference Remove an arima model from an existing one. More exactly, m_diff =
m_left - m_right iff m_left = m_right + m_diff.

Description

Remove an arima model from an existing one. More exactly, m_diff = m_left - m_right iff m_left =
m_right + m_diff.

Usage

arima_difference(left, right, simplify = TRUE)

Arguments

left Left operand (JD3_ARIMA object)

right Right operand (JD3_ARIMA object)

simplify Simplify the results if possible (common roots in the auto-regressive and in the
moving average polynomials, including unit roots)

Value

a "JD3_ARIMA" model.

Examples

mod1 = arima_model(delta = c(1,-2,1))
mod2 = arima_model(variance=.01)
diff <- arima_difference(mod1, mod2)
sum <- arima_sum(diff, mod2)
sum should be equal to mod1

14 arima_properties

arima_model ARIMA Model

Description

ARIMA Model

Usage

arima_model(name = "arima", ar = 1, delta = 1, ma = 1, variance = 1)

Arguments

name Name of the model.

ar coefficients of the regular auto-regressive polynomial (1 + ar(1)B + ar(2)B + ...).
True signs.

delta non stationary auto-regressive polynomial.

ma coefficients of the regular moving average polynomial (1 + ma(1)B + ma(2)B +
...). True signs.

variance variance.

Value

a "JD3_ARIMA" model.

arima_properties Properties of an ARIMA model; the (pseudo-)spectrum and the auto-
covariances of the model are returned

Description

Properties of an ARIMA model; the (pseudo-)spectrum and the auto-covariances of the model are
returned

Usage

arima_properties(model, nspectrum = 601, nac = 36)

Arguments

model a "JD3_ARIMA" model (created with arima_model()).

nspectrum number of points to calculate the spectrum; th points are uniformly distributed
in [0, pi]

nac maximum lag at which to calculate the auto-covariances; if the model is non-
stationary, the auto-covariances are computed on its stationary transformation.

arima_sum 15

Value

A list with tha auto-covariances and with the (pseudo-)spectrum

Examples

mod1 <- arima_model(ar = c(0.1, 0.2), delta = c(1,-1), ma = 0)
arima_properties(mod1)

arima_sum Sum ARIMA Models

Description

Sum ARIMA Models

Usage

arima_sum(...)

Arguments

... list of ARIMA models (created with arima_model()).

Details

Adds several Arima models, considering that their innovations are independent. The sum of two
Arima models is computed as follows: the auto-regressive parts (stationary and non stationary of
the aggregated model are the smaller common multiple of the corresponding polynomials of the
components. The sum of the acf of the modified moving average polynomials is then computed and
factorized, to get the moving average polynomial and innovation variance of the sum.

Value

a "JD3_ARIMA" model.

Examples

mod1 = arima_model(ar = c(0.1, 0.2), delta = 0, ma = 0)
mod2 = arima_model(ar = 0, delta = 0, ma = c(0.4))
arima_sum(mod1, mod2)

16 calendar_td

autocorrelations Autocorrelation Functions

Description

Autocorrelation Functions

Usage

autocorrelations(data, mean = TRUE, n = 15)

autocorrelations_partial(data, mean = TRUE, n = 15)

autocorrelations_inverse(data, nar = 30, n = 15)

Arguments

data data being tested.

mean Mean correction. If TRUE, the auto-correlations are computed as usual. If FALSE,
we consider that the (known) mean is 0 and that the series has been corrected
for it.

n maximum lag at which to calculate the stats.

nar number of AR lags used to compute inverse autocorrelations.

Examples

x = ABS$X0.2.09.10.M
autocorrelations(x)
autocorrelations_partial(x)
autocorrelations_inverse(x)

calendar_td Trading day regressors with pre-defined holidays

Description

Allows to generate trading day regressors (as many as defined groups), taking into account 7
or less different types of days, from Monday to Sunday, and specific holidays,which are to de-
fined beforehand in a calendar using the functions national_calendar,weighted_calendar or
Chained_calendar.

calendar_td 17

Usage

calendar_td(
calendar,
frequency,
start,
length,
s,
groups = c(1, 2, 3, 4, 5, 6, 0),
holiday = 7,
contrasts = TRUE

)

Arguments

calendar The calendar containing the required holidays
frequency Frequency of the series, number of periods per year (12,4,3,2..)
start, length First date (array with the first year and the first period) (for instance c(1980,

1)) and number of periods of the output variables. Can also be provided with
the s argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

groups Groups of days. The length of the array must be 7. It indicates to what group
each week day belongs. The first item corresponds to Mondays and the last one
to Sundays. The group used for contrasts (usually Sundays) is identified by 0.
The other groups are identified by 1, 2,... n (<= 6). For instance, usual trading
days are defined by c(1,2,3,4,5,6,0), week days by c(1,1,1,1,1,0,0), week days,
Saturdays, Sundays by c(1,1,1,1,1,2,0) etc...

holiday Day to aggregate holidays with. (holidays are considered as that day). 1 for
Monday... 7 for Sunday. Doesn’t necessary belong to the 0-group.

contrasts If true, the variables are defined by contrasts with the 0-group. Otherwise, raw
number of days is provided.

Details

Aggregated values for monthly or quarterly are the numbers of days belonging to a given group,
holidays are all summed together in of those groups. Contrasts are the differences between the num-
ber of days in a given group (1 to 6) and the number of days in the reference group (0). Regressors
are corrected for long-term mean if contrasts = TRUE.

Value

Time series (object of class c("ts","mts","matrix")) corresponding to each group, starting with
the 0-group (contrasts = FALSE) or the 1-group (contrasts = TRUE).

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/

18 chained_calendar

See Also

national_calendar, td

Examples

BE <- national_calendar(list(
fixed_day(7,21),
special_day("NEWYEAR"),
special_day("CHRISTMAS"),
special_day("MAYDAY"),
special_day("EASTERMONDAY"),
special_day("ASCENSION"),
special_day("WHITMONDAY"),
special_day("ASSUMPTION"),
special_day("ALLSAINTSDAY"),
special_day("ARMISTICE")))

calendar_td(BE, 12, c(1980,1), 240, holiday=7, groups=c(1,1,1,2,2,3,0),
contrasts = FALSE)

chained_calendar Create a Chained Calendar

Description

Allows to combine two calendars, one before and one after a given date.

Usage

chained_calendar(calendar1, calendar2, break_date)

Arguments

calendar1, calendar2
calendars to chain.

break_date the break date in the format "YYYY-MM-DD".

Details

A chained calendar is an useful option when major changes in the composition of the holidays take
place. In such a case two calendars describing the situation before and after the change of regime
can be defined and bound together, one before the break and one after the break.

Value

returns an object of class c("JD3_CHAINEDCALENDAR","JD3_CALENDARDEFINITION")

clean_extremities 19

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

national_calendar, weighted_calendar

Examples

Belgium <- national_calendar(list(special_day("NEWYEAR"),fixed_day(7,21)))
France <- national_calendar(list(special_day("NEWYEAR"),fixed_day(7,14)))
chained_cal<-chained_calendar(France, Belgium, "2000-01-01")

clean_extremities Removal of missing values at the beginning/end

Description

Removal of missing values at the beginning/end

Usage

clean_extremities(s)

Arguments

s Original series

Value

Cleaned series

Examples

y <- window(ABS$X0.2.09.10.M, start = 1982, end = 2018, extend = TRUE)
y
clean_extremities(y)

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction

20 data_to_ts

compare_annual_totals Compare the annual totals of two series (usually the raw series and
the seasonally adjusted series)

Description

Compare the annual totals of two series (usually the raw series and the seasonally adjusted series)

Usage

compare_annual_totals(raw, sa)

Arguments

raw Raw series

sa Seasonally adjusted series

Value

The largest annual difference (in percentage of the average level of the seasonally adjusted series)

data_to_ts Promote a R time series to a "full" ts of jdemetra

Description

Promote a R time series to a "full" ts of jdemetra

Usage

data_to_ts(s, name)

Arguments

s R time series

name name of the series

Examples

s<-ABS$X0.2.09.10.M
t<-data_to_ts(s,"test")

daysOf 21

daysOf Provides a list of dates corresponding to each period of the given time
series

Description

Provides a list of dates corresponding to each period of the given time series

Usage

daysOf(ts, pos = 1)

Arguments

ts A time series

pos The position of the first considered period.

Value

A list of the starting dates of each period

Examples

daysOf(retail$BookStores)

density_chi2 The Chi-Squared Distribution

Description

Density, (cumulative) distribution function and random generation for chi-squared distribution.

Usage

density_chi2(df, x)

cdf_chi2(df, x)

random_chi2(df, n)

Arguments

df degrees of freedom.

x vector of quantiles.

n number of observations.

22 density_inverse_gamma

density_gamma The Gamma Distribution

Description

Density, (cumulative) distribution function and random generation for Gamma distribution.

Usage

density_gamma(shape, scale, x)

cdf_gamma(shape, scale, x)

random_gamma(shape, scale, n)

Arguments

shape, scale shape and scale parameters.

x vector of quantiles.

n number of observations.

density_inverse_gamma The Inverse-Gamma Distribution

Description

Density, (cumulative) distribution function and random generation for inverse-gamma distribution.

Usage

density_inverse_gamma(shape, scale, x)

cdf_inverse_gamma(shape, scale, x)

random_inverse_gamma(shape, scale, n)

Arguments

shape, scale shape and scale parameters.

x vector of quantiles.

n number of observations.

density_inverse_gaussian 23

density_inverse_gaussian

The Inverse-Gaussian Distribution

Description

Density, (cumulative) distribution function and random generation for inverse-gaussian distribution.

Usage

density_inverse_gaussian(shape, scale, x)

cdf_inverse_gaussian(shape, scale, x)

random_inverse_gaussian(shape, scale, n)

Arguments

shape, scale shape and scale parameters.

x vector of quantiles.

n number of observations.

density_t The Student Distribution

Description

Density, (cumulative) distribution function and random generation for Student distribution.

Usage

density_t(df, x)

cdf_t(df, x)

random_t(df, n)

Arguments

df degrees of freedom.

x vector of quantiles.

n number of observations.

24 diagnostics

Examples

T with 2 degrees of freedom.
z <- density_t(2, .01 * seq(-100, 100, 1))
T with 2 degrees of freedom. 100 random
z <- random_t(2, 100)

deprecated-rjd3toolkit

Deprecated functions

Description

Use sa_decomposition() instead of sa.decomposition().

Usage

sa.decomposition(x, ...)

Arguments

x the object to print.

... further arguments.

diagnostics Generic Diagnostics Function

Description

Generic Diagnostics Function

Usage

diagnostics(x, ...)

S3 method for class 'JD3'
diagnostics(x, ...)

Arguments

x the object to extract diagnostics.

... further arguments.

dictionary 25

dictionary Get Dictionary and Result

Description

Extract dictionary of a "JD3_ProcResults" object (dictionary()) and extract a specific value
(result()) or a list of values (user_defined()).

Usage

dictionary(object)

result(object, id)

user_defined(object, userdefined = NULL)

Arguments

object the java object.
id the name of the object to extract.
userdefined vector containing the names of the object to extract.

differences Differencing of a series

Description

Differencing of a series

Usage

differences(data, lags = 1, mean = TRUE)

Arguments

data The series to be differenced.
lags Lags of the differencing.
mean Mean correction.

Value

The differenced series.

Examples

differences(retail$BookStores, c(1,1,12), FALSE)

26 differencing_fast

differencing_fast Automatic differencing

Description

The series is differentiated till its variance is decreasing.

Usage

differencing_fast(data, period, mad = TRUE, centile = 90, k = 1.2)

Arguments

data Series being differenced.

period Period considered in the automatic differencing.

mad Use of MAD in the computation of the variance (true by default).

centile Percentage of the data used for computing the variance (90 by default).

k tolerance in the decrease of the variance. The algorithm stops if the new varance
is higher than k*the old variance.

Value

Stationary transformation

• ddata: data after differencing

• mean: mean correction

• differences:

– lag: ddata(t)=data(t)-data(t-lag)

– order: order of the differencing

Examples

differencing_fast(log(ABS$X0.2.09.10.M),12)

do_stationary 27

do_stationary Automatic stationary transformation

Description

Stationary transformation of a series by simple differencing of lag 1. Automatic processing (iden-
tification of the order of the differencing) based on auto-correlations and on mean correction. The
series should not be seasonal. Source: Tramo

Usage

do_stationary(data, period)

Arguments

data Series being differenced.

period Period of the series.

Value

Stationary transformation

• ddata: data after differencing

• mean: mean correction

• differences:

– lag: ddata(t)=data(t)-data(t-lag)
– order: order of the differencing

Examples

do_stationary(log(ABS$X0.2.09.10.M),12)

easter_dates Display Easter Sunday dates in given period

Description

Allows to display the date of Easter Sunday for each year, in the defined period. Dates are displayed
in "YYYY-MM-DD" format and as a number of days since January 1st 1970.

Usage

easter_dates(year0, year1, julian = FALSE)

28 easter_day

Arguments

year0, year1 starting year and ending year

julian Boolean indicating if Julian calendar must be used.

Value

a named numeric vector. Names are the dates in format "YYYY-MM-DD", values are number of
days since January 1st 1970.

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

national_calendar, easter_day

Examples

#Dates from 2018(included) to 2023 (included)
easter_dates(2018, 2023)

easter_day Set a Holiday on an Easter related day

Description

Allows to define a holiday which date is related to Easter Sunday.

Usage

easter_day(offset, julian = FALSE, weight = 1, validity = NULL)

Arguments

offset The position of the holiday in relation to Easter Sunday, measured in days (can
be positive or negative).

julian Boolean indicating if Julian calendar must be used.

weight weight associated to the holiday.

validity validity period: either NULL (full sample) or a named list with "start" and/or
"end" dates in the format "YYYY-MM-DD".

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction

easter_variable 29

See Also

national_calendar, fixed_day,special_day,fixed_week_day

Examples

easter_day(1) #Easter Monday
easter_day(-2) # Easter Good Friday
Corpus Christi 60 days after Easter
Sunday in Julian calendar with weight 0.5, from January 2000 to December 2020
easter_day(offset=60,julian=TRUE,weight=0.5,
validity = list(start="2000-01-01", end = "2020-12-01"))

easter_variable Easter regressor

Description

Allows to generate a regressor taking into account the (Julian) Easter effect in monthly or quarterly
time series.

Usage

easter_variable(
frequency,
start,
length,
s,
duration = 6,
endpos = -1,
correction = c("Simple", "PreComputed", "Theoretical", "None")

)

julianeaster_variable(frequency, start, length, s, duration = 6)

Arguments

frequency Frequency of the series, number of periods per year (12,4,3,2..)
start, length First date (array with the first year and the first period) (for instance c(1980,

1)) and number of periods of the output variables. Can also be provided with
the s argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

duration Duration (length in days) of the Easter effect. (value between 1 and 20, default
=6)

endpos Position of the end of the Easter effect, relatively to Easter: -1(default): before
Easter Sunday, 0: on Easter Sunday, 1: on Easter Monday)

correction mean correction option. Simple"(default), "PreComputed", "Theoretical" or
"None".

30 fixed_day

Value

A time series (object of class "ts")

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

calendar_td

Examples

#Monthly regressor, five-year long, duration 8 days, effect finishing on Easter Monday
ee<-easter_variable(12, c(2020,1),length=5*12,duration=8, endpos=1)

fixed_day Set a holiday on a Fixed Day

Description

creates a holiday falling on a fixed day each year, with an optional weight and period of validity,
like Christmas which is always celebrated on December 25th.

Usage

fixed_day(month, day, weight = 1, validity = NULL)

Arguments

month, day the month and the day of the fixed day to add.

weight weight associated to the holiday.

validity validity period: either NULL (full sample) or a named list with "start" and/or
"end" dates in the format "YYYY-MM-DD".

Value

returns an object of class c("JD3_FIXEDDAY","JD3_HOLIDAY")

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

national_calendar, special_day,easter_day

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction

fixed_week_day 31

Examples

day <- fixed_day(7, 21, .9)
day # July 21st, with weight=0.9, on the whole sample
day <- fixed_day(12, 25, .5, validity = list(start = "2010-01-01"))
day # December 25th, with weight=0.5, from January 2010
day <- fixed_day(12, 25, .5, validity = list(start="1968-02-01", end = "2010-01-01"))
day # December 25th, with weight=0.9, from February 1968 until January 2010

fixed_week_day Set a Holiday on a Fixed Week Day

Description

Allows to define a holiday falling on a fixed week day each year, like Labour Day in the USA which
is always celebrated on the first Monday of September.

Usage

fixed_week_day(month, week, dayofweek, weight = 1, validity = NULL)

Arguments

month month of the holiday: from 1 (January) to 12 (December).

week position of the specified week day in the month: from 1 (first week of the month)
to 5. Should be always lower than 5. -1 for the last dayofweek of the month.

dayofweek day of the week: from 1 (Monday) to 7 (Sunday).

weight weight associated to the holiday.

validity validity period: either NULL (full sample) or a named list with "start" and/or
"end" dates in the format "YYYY-MM-DD".

Value

returns an object of class c("JD3_FIXEDWEEKDAY","JD3_HOLIDAY")

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

national_calendar, fixed_day,special_day,easter_day

Examples

day <- fixed_week_day(9, 1, 1) # first Monday(1) of September.
day

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction

32 holidays

holidays Daily calendar regressors corresponding to holidays

Description

Allows to generate daily regressors (dummy variables) corresponding to each holiday of a pre-
defined calendar.

Usage

holidays(
calendar,
start,
length,
nonworking = c(6, 7),
type = c("Skip", "All", "NextWorkingDay", "PreviousWorkingDay"),
single = FALSE

)

Arguments

calendar The calendar in which the holidays are defined.

start Starting date for the regressors, format "YYYY-MM-DD".

length Length of the regressors in days.

nonworking Indexes of non working days (Monday=1, Sunday=7).

type Adjustment type when a holiday falls on a week-end: "NextWorkingDay": the
holiday is set to the next day, "PreviousWorkingDay": the holiday is set to the
previous day, "Skip": holidays corresponding to non working days are simply
skipped in the matrix, "All": (holidays are always put in the matrix, even if they
correspond to a non working day.

single Boolean indication if a single variable (TRUE) should be returned or a matrix
(FALSE, the default) containing the different holidays in separate columns.

Details

The pre-defined in a calendar has to be created with the functions national_calendar or weighted_calendar
or weighted_calendar. A many regressors as defined holidays are generated, when the holiday
occurs the value is 1 and 0 otherwise. This kind of non-aggregated regressors are used for calendar
correction in daily data.

Value

A matrix (class "matrix") where each column is associated to a holiday (in the order of creation of
the holiday) and each row to a date.

intervention_variable 33

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

calendar_td

Examples

BE <- national_calendar(list(
fixed_day(7,21),
special_day("NEWYEAR"),
special_day("CHRISTMAS"),
special_day("MAYDAY"),
special_day("EASTERMONDAY"),
special_day("ASCENSION"),
special_day("WHITMONDAY"),
special_day("ASSUMPTION"),
special_day("ALLSAINTSDAY"),
special_day("ARMISTICE")))

q<-holidays(BE, "2021-01-01", 366*10, type="All")
plot(apply(q,1, max))

intervention_variable Intervention variable

Description

Function allowing to create external regressors as sequences of zeros and ones. The generated
variables will have to be added with add_usrdefvar function will require a modelling context
definition with modelling_context to be used in an estimation process.

Usage

intervention_variable(
frequency,
start,
length,
s,
starts,
ends,
delta = 0,
seasonaldelta = 0

)

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction

34 intervention_variable

Arguments

frequency Frequency of the series, number of periods per year (12,4,3,2..)
start, length First date (array with the first year and the first period) (for instance c(1980,

1)) and number of periods of the output variables. Can also be provided with
the s argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

starts, ends characters specifying sequences of starts/ends dates for the intervention variable.
Can be characters or integers.

delta regular differencing order.
seasonaldelta seasonal differencing order.

Details

Intervention variables are combinations of any possible sequence of ones and zeros (the sequence
of ones being defined by the parameters starts and ends) and of 1

(1−B)d
and 1

(1−Bs)D
where B is

the backwards operator, s is the frequency of the time series, d and D are the parameters delta and
seasonaldelta.
For example, with delta = 0 and seasonaldelta = 0 we get temporary level shifts defined by the
parameters starts and ends. With delta = 1 and seasonaldelta = 0 we get the cumulative sum
of temporary level shifts, once differenced the regressor will become a classical level shift.

References

More information on auxiliary variables in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

See Also

modelling_context, add_usrdefvar

Examples

iv1<-intervention_variable(12, c(2000, 1), 60,
starts = "2001-01-01", ends = "2001-12-01")

plot(iv1)
iv2<- intervention_variable(12, c(2000, 1), 60,

starts = "2001-01-01", ends = "2001-12-01", delta = 1)
plot (iv2)
using one variable in a a seasonal adjustment process
regressors as a list of two groups reg1 and reg2
vars<-list(reg1=list(x = iv1),reg2=list(x = iv2))
creating the modelling context
my_context<-modelling_context(variables=vars)
customize a default specification
init_spec <- rjd3x13::x13_spec("RSA5c")
new_spec<- add_usrdefvar(init_spec,id = "reg1.iv1", regeffect="Trend")
modelling context is needed for the estimation phase
sa_x13<- rjd3x13::x13(ABS$X0.2.09.10.M, new_spec, context = my_context)

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/

jd3_print 35

jd3_print JD3 print functions

Description

JD3 print functions

Usage

S3 method for class 'JD3_ARIMA'
print(x, ...)

S3 method for class 'JD3_UCARIMA'
print(x, ...)

S3 method for class 'JD3_SARIMA'
print(x, ...)

S3 method for class 'JD3_SARIMA_ESTIMATION'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

S3 method for class 'JD3_SPAN'
print(x, ...)

S3 method for class 'JD3_LIKELIHOOD'
print(x, ...)

S3 method for class 'JD3_REGARIMA_RSLTS'
print(
x,
digits = max(3L, getOption("digits") - 3L),
summary_info = getOption("summary_info"),
...

)

Arguments

x the object to print.

... further unused parameters.

digits minimum number of significant digits to be used for most numbers.

summary_info boolean indicating if a message suggesting the use of the summary function for
more details should be printed. By default used the option "summary_info" it
used, which initialized to TRUE.

36 ljungbox

likelihood Title

Description

Title

Usage

likelihood(
nobs,
neffectiveobs = NA,
nparams = 0,
ll,
adjustedll = NA,
aic,
aicc,
bic,
bicc,
ssq

)

Arguments

ssq

ljungbox Ljung-Box Test

Description

Compute Ljung-Box test to check the independence of a data.

Usage

ljungbox(data, k = 1, lag = 1, nhp = 0, sign = 0, mean = TRUE)

Arguments

data data being tested.

k number of auto-correlations used in the test

lag number of lags used between two auto-correlations.

nhp number of hyper parameters (to correct the degree of freedom)

long_term_mean 37

sign if sign = 1, only positive auto-corrrelations are considered in the test. If sign =
-1, only negative auto-correlations are considered. If sign = 0, all auto-correlations
are integrated in the test.

mean Mean correction. If TRUE, the auto-correlations are computed as usual. If FALSE,
we consider that the (known) mean is 0 and that the series has been corrected
for it.

Value

A c("JD3_TEST", "JD3") object (see statisticaltest() for details).

Examples

ljungbox(random_t(2, 100), lag = 24, k =1)
ljungbox(ABS$X0.2.09.10.M, lag = 24, k =1)

long_term_mean Display Long-term means for a set of calendar regressors

Description

Given a pre-defined calendar and set of groups, the function displays the long-term means which
would be used to seasonally adjust the corresponding regressors, as the final value using contrasts
is "number of days in the group - long term mean".

Usage

long_term_mean(
calendar,
frequency,
groups = c(1, 2, 3, 4, 5, 6, 0),
holiday = 7

)

Arguments

calendar The calendar containing the required holidays

frequency Frequency of the series, number of periods per year (12,4,3,2..)

groups Groups of days. The length of the array must be 7. It indicates to what group
each week day belongs. The first item corresponds to Mondays and the last one
to Sundays. The group used for contrasts (usually Sundays) is identified by 0.
The other groups are identified by 1, 2,... n (<= 6). For instance, usual trading
days are defined by c(1,2,3,4,5,6,0), week days by c(1,1,1,1,1,0,0), week days,
Saturdays, Sundays by c(1,1,1,1,1,2,0) etc...

holiday Day to aggregate holidays with. (holidays are considered as that day). 1 for
Monday... 7 for Sunday. Doesn’t necessary belong to the 0-group.

38 lp_variable

Details

A long-term mean is a probability based computation of the average value for every period in every
group. (see references). For monthly regressors there are 12 types of periods (January to December).

Value

returns an object of class c("matrix","array") with the long term means corresponding to each
group/period, starting with the 0-group.

Examples

BE <- national_calendar(list(
fixed_day(7,21),
special_day("NEWYEAR"),
special_day("CHRISTMAS"),
special_day("MAYDAY"),
special_day("EASTERMONDAY"),
special_day("ASCENSION"),
special_day("WHITMONDAY"),
special_day("ASSUMPTION"),
special_day("ALLSAINTSDAY"),
special_day("ARMISTICE")))
lt<-long_term_mean(BE,12,

groups = c(1,1,1,1,1,0,0),
holiday = 7)

lp_variable Leap Year regressor

Description

Allows to generate a regressor correcting for the leap year or length-of-period effect.

Usage

lp_variable(
frequency,
start,
length,
s,
type = c("LeapYear", "LengthOfPeriod")

)

Arguments

frequency Frequency of the series, number of periods per year (12,4,3,2..)

mad 39

start, length First date (array with the first year and the first period) (for instance c(1980,
1)) and number of periods of the output variables. Can also be provided with
the s argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

type the modelling of the leap year effect: as a contrast variable (type = "LeapYear",
default) or by a length-of-month (or length-of-quarter; type = "LengthOfPeriod").

Value

Time series (object of class "ts")

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

calendar_td

Examples

Leap years occur in year 2000, 2004, 2008 and 2012
lp_variable(4, start = c(2000, 1), length = 4*13)
lper<-lp_variable(12,c(2000,1),length=10*12,type ="LengthOfPeriod")

mad Title

Description

Title

Usage

mad(data, centile = 50, medianCorrected = TRUE)

Arguments

medianCorrected

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction

40 modelling_context

modelling_context Create context

Description

Function allowing to include calendars and external regressors in a format that makes them usable
in an estimation processes (seasonal adjustment or pre-processing). The regressors can be created
with functions available in the package or come from any other source, provided they are "TS" class
objects.

Usage

modelling_context(calendars = NULL, variables = NULL)

Arguments

calendars list of calendars.
variables list of variables.

Value

list of calendars and variables

References

More information on auxiliary variables in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

See Also

add_usrdefvar, intervention_variable

Examples

creating one or several external regressors (TS objects), which will
be gathered in one or several groups
iv1<-intervention_variable(12, c(2000, 1), 60,
starts = "2001-01-01", ends = "2001-12-01")
iv2<- intervention_variable(12, c(2000, 1), 60,
starts = "2001-01-01", ends = "2001-12-01", delta = 1)
regressors as a list of two groups reg1 and reg2
vars<-list(reg1=list(x = iv1),reg2=list(x = iv2))
creating the modelling context
my_context<-modelling_context(variables=vars)
customize a default specification
init_spec <- rjd3x13::x13_spec("RSA5c")
new_spec<- add_usrdefvar(init_spec,name = "reg1.iv1", regeffect="Trend")
modelling context is needed for the estimation phase
sa_x13<- rjd3x13::x13(ABS$X0.2.09.10.M, new_spec, context = my_context)

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/

national_calendar 41

national_calendar Create a National Calendar

Description

Will create a calendar as a list of days corresponding to the required holidays. The holidays have
to be generated by one of these functions: fixed_day(), fixed_week_day(), easter_day(),
special_day() or single_day().

Usage

national_calendar(days, mean_correction = TRUE)

Arguments

days list of holidays to be taken into account in the calendar

Value

returns an object of class c("JD3_CALENDAR","JD3_CALENDARDEFINITION")

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

See Also

chained_calendar, weighted_calendar

Examples

#Fictional calendar using all possibilities to set the required holidays
MyCalendar <- national_calendar(list(

fixed_day(7,21),
special_day("NEWYEAR"),
special_day("CHRISTMAS"),
fixed_week_day(7, 2, 3), # second Wednesday of July
special_day("MAYDAY"),
easter_day(1), # Easter Monday
easter_day(-2), # Good Friday
single_day("2001-09-11"), # appearing once
special_day("ASCENSION"),
easter_day(offset=60, julian=FALSE, weight=0.5,
validity = list(start="2000-01-01", end = "2020-12-01")), # Corpus Christi
special_day("WHITMONDAY"),
special_day("ASSUMPTION"),
special_day("ALLSAINTSDAY"),
special_day("ARMISTICE")))

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/

42 normality_tests

normality_tests Normality Tests

Description

Set of functions to test the normality of a time series.

Usage

bowmanshenton(data)

doornikhansen(data)

jarquebera(data, k = 0, sample = TRUE)

skewness(data)

kurtosis(data)

Arguments

data data being tested.

k number of degrees of freedom to be subtracted if the input time series is a series
of residuals.

sample boolean indicating if unbiased empirical moments should be computed.

Value

A c("JD3_TEST", "JD3") object (see statisticaltest for details).

Functions

• bowmanshenton(): Bowman-Shenton test

• doornikhansen(): Doornik-Hansen test

• jarquebera(): Jarque-Bera test

• skewness(): Skewness test

• kurtosis(): Kurtosis test

Examples

x <- rnorm(100) # null
bowmanshenton(x)
doornikhansen(x)
jarquebera(x)

x <- random_t(2, 100) # alternative

outliers_variables 43

bowmanshenton(x)
doornikhansen(x)
jarquebera(x)

outliers_variables Generating Outlier regressors

Description

Generating Outlier regressors

Usage

ao_variable(frequency, start, length, s, pos, date = NULL)

tc_variable(frequency, start, length, s, pos, date = NULL, rate = 0.7)

ls_variable(frequency, start, length, s, pos, date = NULL, zeroended = TRUE)

so_variable(frequency, start, length, s, pos, date = NULL, zeroended = TRUE)

Arguments

frequency Frequency of the series, number of periods per year (12,4,3,2..)

start, length First date (array with the first year and the first period) (for instance c(1980,
1)) and number of periods of the output variables. Can also be provided with
the s argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

pos, date the date of the outlier, defined by the position in period compared to the first
date (pos parameter) or by a specific date defined in the format "YYYY-MM-DD".

rate the decay rate of the transitory change regressor (see details).

zeroended Boolean indicating if the regressor should end by 0 (zeroended = TRUE, default)
or 1 (zeroended = FALSE), argument valid only for LS and SO.

Details

An additive outlier (AO, ao_variable) is defined as:

AOt =

{
1 if t = t0

0 if t ̸= t0

A level shift (LS, ls_variable) is defined as (if zeroended = TRUE):

LSt =

{
−1 if t < t0

0 if t ≥ t0

44 periodic.dummies

A transitory change (TC, tc_variable) is defined as:

TCt =

{
0 if t < t0

αt−t0 t ≥ t0

A seasonal outlier (SO, so_variable) is defined as (if zeroended = TRUE):

SOt =


0 if t ≥ t0

−1 if t < t0 and t same periode as t0
− 1

s−1 otherwise

Examples

#Outliers in February 2002
ao <- ao_variable(12, c(2000,1), length = 12*4, date = "2002-02-01")
ls <- ls_variable(12, c(2000,1), length = 12*4, date = "2002-02-01")
tc <- tc_variable(12, c(2000,1), length = 12*4, date = "2002-02-01")
so <- so_variable(12, c(2000,1), length = 12*4, date = "2002-02-01")
plot.ts(ts.union(ao, ls, tc, so), plot.type = "single",

col = c("black", "orange", "green", "gray"))

periodic.dummies Periodic dummies and contrasts

Description

Periodic dummies and contrasts

Usage

periodic.dummies(frequency, start, length, s)

periodic.contrasts(frequency, start, length, s)

Arguments

frequency Frequency of the series, number of periods per year (12,4,3,2..)

start, length First date (array with the first year and the first period) (for instance c(1980,
1)) and number of periods of the output variables. Can also be provided with
the s argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

Details

The function periodic.dummies creates as many time series as types of periods in a year (4 or 12)
with the value one only for one given type of period (ex Q1) The function periodic.contrasts is based
on periodic.dummies but adds -1 to the period preeceding a 1.

periodic_splines 45

Examples

periodic dummies for a quarterly series
p<-periodic.dummies(4, c(2000,1), 60)
#periodic contrasts for a quarterly series
q<-periodic.contrasts(4, c(2000,1), 60)
q[1:9,]

periodic_splines Period splines

Description

Period splines

Usage

periodic_splines(order = 4, period = 1, knots, pos)

Arguments

order Order of the splines (4 for cubic)

period Period of the splines (1 by default)

knots Knots of the splines (in [0, period[]])

pos Requested positions (in [0, period[]])

Value

A matrix (len(pos) x len(knots))

print.calendars Calendars Print Methods

Description

Print functions for calendars

46 r2jd_calendarts

Usage

S3 method for class 'JD3_FIXEDDAY'
print(x, ...)

S3 method for class 'JD3_FIXEDWEEKDAY'
print(x, ...)

S3 method for class 'JD3_EASTERDAY'
print(x, ...)

S3 method for class 'JD3_SPECIALDAY'
print(x, ...)

S3 method for class 'JD3_SINGLEDAY'
print(x, ...)

S3 method for class 'JD3_CALENDAR'
print(x, ...)

Arguments

x The object.

... other unused parameters.

r2jd_calendarts Create Java CalendarTimeSeries

Description

Create Java CalendarTimeSeries

Usage

r2jd_calendarts(calendarobs)

Arguments

calendarobs list.

Examples

obs<-list(
list(start=as.Date("1980-01-01"), end=as.Date("1999-12-31"), value=2000),
list(start=as.Date("2000-01-01"), end=as.Date("2010-01-01"), value=1000)
)
jobj<-r2jd_calendarts(obs)

ramp_variable 47

ramp_variable Ramp regressor

Description

Ramp regressor

Usage

ramp_variable(frequency, start, length, s, range)

Arguments

frequency Frequency of the series, number of periods per year (12,4,3,2..)

start, length First date (array with the first year and the first period) (for instance c(1980,
1)) and number of periods of the output variables. Can also be provided with
the s argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

range the range of the regressor. A vector of length 2 containing the datesin the format
"YYYY-MM-DD" or the position in the series, in number of periods from counting
from the series start.

Details

A ramp between two dates t0 and t1 is defined as:

RPt =


−1 if t ≥ t0
t−t0
t1−t0

− 1 t0 < t < t1

0 t ≤ t1

Examples

Ramp variable from January 2001 to September 2001
rp <- ramp_variable(12, c(2000,1), length = 12*4, range = c(13, 21))
Or equivalently
rp<-ramp_variable(12, c(2000,1), length = 12*4, range = c("2001-01-01", "2001-09-02"))
plot.ts(rp)

48 rangemean_tstat

rangemean_tstat Range-Mean Regression

Description

Function to perform a range-mean regression, trimmed to avoid outlier distortion. The slope is used
in TRAMO to select whether the original series will be transformed into log or maintain in level.

Usage

rangemean_tstat(data, period = 0, groupsize = 0, trim = 0)

Arguments

data data to test.

period periodicity of the data.

groupsize number of observations per group (before being trimmed). The default group
size (groupsize = 0) is computed as followed:

• if period = 12 or period = 6, it is equal to 12;
• if period = 4 it is equal to 12 if the data has at least 166 observations, 8

otherwise;
• if period = 3 or period = 2 it is equal to 12 if the data has at least 166

observations, 6 otherwise;
• if period = 1 it is equal to 9 if the data has at least 166 observations, 5

otherwise;
• it is equal to period otherwise.

trim number of trimmed observations.

Details

First, the data is divided into n groups of successive observations of length l (groupsize). That is,
the first group is formed with the first l observations, the second group is formed with observations
1+ l to 2l, etc. Then, for each group i, the observations are sorted and the trim smallest and largest
observations are rejected (to avoid outlier distortion). With the other observations, the range (noted
yi) and mean (noted mi) are computed.

Finally, the following regression is performed :

yt = α+ βmt + ut.

The function rangemean_tstat returns the T-statistic associated to β. If it is significantly higher
than 0, log transformation is recommended.

Value

T-Stat of the slope of the range-mean regression.

reload_dictionaries 49

Examples

y = ABS$X0.2.09.10.M
Multiplicative pattern
plot(y)
period = 12
rm_t = rangemean_tstat(y, period = period, groupsize = period)
rm_t # higher than 0
Can be tested:
pt(rm_t, period - 2, lower.tail = FALSE)
Or :
1-cdf_t(period-2, rm_t)

Close to 0
rm_t_log = rangemean_tstat(log(y), period = period, groupsize = period)
rm_t_log
pt(rm_t_log, period - 2, lower.tail = FALSE)

reload_dictionaries Title

Description

Title

Usage

reload_dictionaries()

runstests Runs Tests around the mean or the median

Description

Functions to compute runs test around the mean or the median (testofruns) or up and down runs
test (testofupdownruns) to check randomness of a data.

Usage

testofruns(data, mean = TRUE, number = TRUE)

testofupdownruns(data, number = TRUE)

Arguments

data data being tested.

mean If TRUE, runs around the mean. Otherwise, runs around the median.

number If TRUE, test the number of runs. Otherwise, test the lengths of the runs.

50 sadecomposition

Value

A c("JD3_TEST", "JD3") object (see statisticaltest() for details).

Functions

• testofruns(): Runs test around mean or median

• testofupdownruns(): up and down runs test

Examples

x <- random_t(5, 1000)
random values
testofruns(x)
testofupdownruns(x)
non-random values
testofruns(ABS$X0.2.09.10.M)
testofupdownruns(ABS$X0.2.09.10.M)

sadecomposition Generic Function for Seasonal Adjustment Decomposition

Description

Generic function to format the seasonal adjustment decomposition components. sa_decomposition()
is a generic function defined in other packages.

Usage

sadecomposition(y, sa, t, s, i, mul)

S3 method for class 'JD3_SADECOMPOSITION'
print(x, n_last_obs = frequency(x$series), ...)

S3 method for class 'JD3_SADECOMPOSITION'
plot(
x,
first_date = NULL,
last_date = NULL,
type_chart = c("sa-trend", "seas-irr"),
caption = c(`sa-trend` = "Y, Sa, trend", `seas-irr` = "Sea., irr.")[type_chart],
colors = c(y = "#F0B400", t = "#1E6C0B", sa = "#155692", s = "#1E6C0B", i = "#155692"),
...

)

sa_decomposition(x, ...)

sarima_decompose 51

Arguments

y, sa, t, s, i, mul seasonal adjustment decomposition parameters.

x the object to print.

n_last_obs number of observations to print (by default equal to the frequency of the series).

... further arguments.
first_date, last_date

first and last date to plot (by default all the data is used).

type_chart the chart to plot: "sa-trend" (by default) plots the input time series, the sea-
sonally adjusted and the trend; "seas-irr" plots the seasonal and the irregular
components.

caption the caption of the plot.

colors the colors used in the plot.

Value

"JD3_SADECOMPOSITION" object.

sarima_decompose Decompose SARIMA Model into three components trend, seasonal,
irregular

Description

Decompose SARIMA Model into three components trend, seasonal, irregular

Usage

sarima_decompose(model, rmod = 0, epsphi = 0)

Arguments

model SARIMA model to decompose.

rmod trend threshold.

epsphi seasonal tolerance (in degrees).

Value

An UCARIMA model

Examples

model <- sarima_model(period = 12, d =1, bd = 1, theta = -0.6, btheta = -0.5)
ucm <- sarima_decompose(model)

52 sarima_hannan_rissanen

sarima_estimate Estimate SARIMA Model

Description

Estimate SARIMA Model

Usage

sarima_estimate(
x,
order = c(0, 0, 0),
seasonal = list(order = c(0, 0, 0), period = NA),
mean = FALSE,
xreg = NULL,
eps = 1e-09

)

Arguments

x a univariate time series.

order vector specifying of the non-seasonal part of the ARIMA model: the AR order,
the degree of differencing, and the MA order.

seasonal specification of the seasonal part of the ARIMA model and the seasonal fre-
quency (by default equals to frequency(x)). Either a list with components
order and period or a numeric vector specifying the seasonal order (the de-
fault period is then used).

mean should the SARIMA model include an intercept term.

xreg vector or matrix of external regressors.

eps precision.

Examples

y <- ABS$X0.2.09.10.M
sarima_estimate(y, order = c(0,1,1), seasonal = c(0,1,1))

sarima_hannan_rissanen

Title

Description

Title

sarima_model 53

Usage

sarima_hannan_rissanen(
x,
order = c(0, 0, 0),
seasonal = list(order = c(0, 0, 0), period = NA),
initialization = c("Ols", "Levinson", "Burg"),
biasCorrection = TRUE,
finalCorrection = TRUE

)

Arguments

x a univariate time series.

order vector specifying of the non-seasonal part of the ARIMA model: the AR order,
the degree of differencing, and the MA order.

seasonal specification of the seasonal part of the ARIMA model and the seasonal fre-
quency (by default equals to frequency(x)). Either a list with components
order and period or a numeric vector specifying the seasonal order (the de-
fault period is then used).

initialization Algorithm used in the computation of the long order auto-regressive model (used
to estimate the innovations)

biasCorrection Bias correction
finalCorrection

Final correction as implemented in Tramo

Examples

y <- ABS$X0.2.09.10.M
sarima_hannan_rissanen(y, order = c(0,1,1), seasonal = c(0,1,1))

sarima_model Seasonal ARIMA model (Box-Jenkins)

Description

Seasonal ARIMA model (Box-Jenkins)

Usage

sarima_model(
name = "sarima",
period,
phi = NULL,
d = 0,
theta = NULL,
bphi = NULL,

54 sarima_properties

bd = 0,
btheta = NULL

)

Arguments

name name of the model.

period period of the model.

phi coefficients of the regular auto-regressive polynomial (1 + ϕ1B + ϕ2B + ...).
True signs.

d regular differencing order.

theta coefficients of the regular moving average polynomial (1 + θ1B + θ2B + ...).
True signs.

bphi coefficients of the seasonal auto-regressive polynomial. True signs.

bd seasonal differencing order.

btheta coefficients of the seasonal moving average polynomial. True signs.

Value

A "JD3_SARIMA" model.

sarima_properties SARIMA Properties

Description

SARIMA Properties

Usage

sarima_properties(model, nspectrum = 601, nacf = 36)

Arguments

model a "JD3_SARIMA" model (created with sarima_model()).

nspectrum number of points in [0, pi] to calculate the spectrum.

nacf maximum lag at which to calculate the acf.

Examples

mod1 <- sarima_model(period = 12, d = 1, bd = 1, theta = 0.2, btheta = 0.2)
sarima_properties(mod1)

sarima_random 55

sarima_random Simulate Seasonal ARIMA

Description

Simulate Seasonal ARIMA

Usage

sarima_random(model, length, stde = 1, tdegree = 0, seed = -1)

Arguments

model a "JD3_SARIMA" model (see sarima_model() function).

length length of the output series.

stde deviation of the normal distribution of the innovations of the simulated series.
Unused if tdegree is larger than 0.

tdegree degrees of freedom of the T distribution of the innovations. tdegree = 0 if nor-
mal distribution is used.

seed seed of the random numbers generator. Negative values mean random seeds

Examples

Airline model
s_model <- sarima_model(period = 12, d =1, bd = 1, theta = 0.2, btheta = 0.2)
x <- sarima_random(s_model, length = 64, seed = 0)
plot(x, type = "l")

sa_preprocessing Generic Preprocessing Function

Description

Generic function for preprocessing defined in other packages.

Usage

sa_preprocessing(x, ...)

Arguments

x, ... parameters.

56 seasonality_canovahansen

seasonality_canovahansen

Canova-Hansen seasonality test

Description

Canova-Hansen seasonality test

Usage

seasonality_canovahansen(
data,
period,
trigs = TRUE,
lag1 = TRUE,
kernel = c("Bartlett", "Square", "Welch", "Tukey", "Hamming", "Parzen"),
order = NA,
start = 1

)

Arguments

data the input data.

period Tested periodicity.

trigs TRUE for trigonometric variables, FALSE for seasonal dummies.

lag1 Lagged variable in the regression model.

kernel Kernel used to compute the robust covariance matrix.

order The truncation parameter used to compute the robust covariance matrix.

start Position of the first observation of the series

Examples

s<-log(ABS$X0.2.20.10.M)
seasonality_canovahansen(s, 12, trigs = FALSE)
seasonality_canovahansen(s, 12, trigs = TRUE)

seasonality_canovahansen_trigs 57

seasonality_canovahansen_trigs

Canova-Hansen test using trigonometric variables

Description

Canova-Hansen test using trigonometric variables

Usage

seasonality_canovahansen_trigs(
data,
periods,
lag1 = TRUE,
kernel = c("Bartlett", "Square", "Welch", "Tukey", "Hamming", "Parzen"),
order = NA,
original = FALSE

)

Arguments

data the input data.

periods Periodicities.

original TRUE for original algorithm, FALSE for solution proposed by T. Proietti (based
on Ox code).

Examples

s<-log(ABS$X0.2.20.10.M)
freqs<-seq(0.01, 0.5, 0.001)
plot(seasonality_canovahansen_trigs(s, 1/freqs, original = FALSE), type='l')

seasonality_combined "X12" Test On Seasonality

Description

"X12" Test On Seasonality

Usage

seasonality_combined(data, period, firstperiod = cycle(data)[1], mul = TRUE)

58 seasonality_f

Arguments

data the input data.

period Tested periodicity.

firstperiod Position in a cycle of the first obs. For example, for a monthly, firstperiod =
1 means January. If data is not a "ts" object, firstperiod = 1 by default.

mul boolean indicating if the seasonal decomposition is multiplicative (mul = TRUE)
or additive (mul = FALSE).

Details

Combined test on the presence of identifiable seasonality (see Ladiray and Quenneville, 1999).

Examples

seasonality_combined(ABS$X0.2.09.10.M, 12)
seasonality_combined(random_t(2, 1000), 7)

seasonality_f F-test on seasonal dummies

Description

F-test on seasonal dummies

Usage

seasonality_f(data, period, model = c("AR", "D1", "WN"), nyears = 0)

Arguments

data the input data.

period Tested periodicity.

model the model to use for the residuals.

nyears Number of number of periods number of cycles considered in the test, at the end
of the series: in periods (positive value) or years (negative values). By default
(nyears = 0), the entire sample is used.

Details

Estimation of a model with seasonal dummies. Joint F-test on the coefficients of the dummies.

Value

A c("JD3_TEST", "JD3") object (see statisticaltest() for details).

seasonality_friedman 59

Examples

seasonality_f(ABS$X0.2.09.10.M, 12)
seasonality_f(random_t(2, 1000), 7)

seasonality_friedman Friedman Seasonality Test

Description

Friedman Seasonality Test

Usage

seasonality_friedman(data, period, nyears = 0)

Arguments

data the input data.

period Tested periodicity.

nyears Number of number of periods number of cycles considered in the test, at the end
of the series: in periods (positive value) or years (negative values). By default
(nyears = 0), the entire sample is used.

Details

Non parametric test ("ANOVA"-type).

Value

A c("JD3_TEST", "JD3") object (see statisticaltest() for details).

seasonality_kruskalwallis

Kruskall-Wallis Seasonality Test

Description

Kruskall-Wallis Seasonality Test

Usage

seasonality_kruskalwallis(data, period, nyears = 0)

60 seasonality_periodogram

Arguments

data the input data.

period Tested periodicity.

nyears Number of number of periods number of cycles considered in the test, at the end
of the series: in periods (positive value) or years (negative values). By default
(nyears = 0), the entire sample is used.

Details

Non parametric test on the ranks.

Value

A c("JD3_TEST", "JD3") object (see statisticaltest() for details).

Examples

seasonality_kruskalwallis(ABS$X0.2.09.10.M, 12)
seasonality_kruskalwallis(random_t(2, 1000), 7)

seasonality_periodogram

Periodogram Seasonality Test

Description

Periodogram Seasonality Test

Usage

seasonality_periodogram(data, period, nyears = 0)

Arguments

data the input data.

period Tested periodicity.

nyears Number of number of periods number of cycles considered in the test, at the end
of the series: in periods (positive value) or years (negative values). By default
(nyears = 0), the entire sample is used.

Details

Tests on the sum of a periodogram at seasonal frequencies.

Value

A c("JD3_TEST", "JD3") object (see statisticaltest() for details).

seasonality_qs 61

Examples

seasonality_periodogram(ABS$X0.2.09.10.M, 12)
seasonality_periodogram(random_t(2, 1000), 7)

seasonality_qs QS Seasonality Test

Description

QS (modified seasonal Ljung-Box) test.

Usage

seasonality_qs(data, period, nyears = 0)

Arguments

data the input data.

period Tested periodicity.

nyears Number of number of periods number of cycles considered in the test, at the end
of the series: in periods (positive value) or years (negative values). By default
(nyears = 0), the entire sample is used.

Value

A c("JD3_TEST", "JD3") object (see statisticaltest() for details).

Examples

seasonality_qs(ABS$X0.2.09.10.M, 12)
seasonality_qs(random_t(2, 1000), 7)

set_arima Set ARIMA Model Structure in Pre-Processing Specification

Description

Function allowing to customize the ARIMA model structure when the automatic modelling is dis-
abled.(see example)

62 set_arima

Usage

set_arima(
x,
mean = NA,
mean.type = c(NA, "Undefined", "Fixed", "Initial"),
p = NA,
d = NA,
q = NA,
bp = NA,
bd = NA,
bq = NA,
coef = NA,
coef.type = c(NA, "Undefined", "Fixed", "Initial")

)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).

mean to fix the coefficient of the mean. If mean = 0, the mean is disabled.

mean.type a character defining the mean coefficient estimation procedure. Possible pro-
cedures are: "Undefined" = no use of any user-defined input (i.e. coefficient
is estimated), "Fixed" = the coefficients are fixed at the value provided by the
user, "Initial" = the value defined by the user is used as the initial condition.

p, d, q, bp, bd, bq to specify the order of the SARIMA model in the form ARIMA(p,d,q)(bp,bd,bd).

coef a vector providing the coefficients for the regular and seasonal AR and MA
polynomials. The vector length must be equal to the sum of the regular and
seasonal AR and MA orders. The coefficients shall be provided in the follow-
ing order: regular AR (Phi; p elements), regular MA (Theta; q elements), sea-
sonal AR (BPhi; bp elements) and seasonal MA (BTheta; bq elements). E.g.:
arima.coef=c(0.6,0.7) with p=1, q=0,bp=1 and bq=0.

coef.type a vector defining the ARMA coefficients estimation procedure. Possible pro-
cedures are: "Undefined" = no use of any user-defined input (i.e. coefficients
are estimated), "Fixed" = the coefficients are fixed at the value provided by the
user, "Initial" = the value defined by the user is used as the initial condition.

Details

x specification param must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

References

More information on reg-arima modelling in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/

set_automodel 63

See Also

set_automodel, set_transform

Examples

create default spec
my_spec<-rjd3x13::x13_spec("rsa5c")
disable automatic arima modelling
my_spec<-set_automodel(my_spec, enabled = FALSE)
customize arima model
my_spec <-set_arima(my_spec,mean = 0.2,
mean.type = "Fixed",
p = 1, d = 2, q = 0,
bp = 1, bd = 1, bq = 0,
coef = c(0.6,0.7),
coef.type = c("Initial","Fixed"))

set_automodel Set Arima Model Identification in Pre-Processing Specification

Description

Function allowing to customize Arima model identification procedure.

Usage

set_automodel(
x,
enabled = NA,
acceptdefault = NA,
cancel = NA,
ub1 = NA,
ub2 = NA,
reducecv = NA,
ljungboxlimit = NA,
tsig = NA,
ubfinal = NA,
checkmu = NA,
mixed = NA,
fct = NA,
balanced = NA,
amicompare = NA

)

64 set_automodel

Arguments

x the specification to customize, must be a "SPEC" class object (see details).

enabled logical. If TRUE, the automatic modelling of the ARIMA model is enabled. If
FALSE, the parameters of the ARIMA model can be specified.

acceptdefault logical. If TRUE, the default model (ARIMA(0,1,1)(0,1,1)) will be chosen in
the first step of the automatic model identification, if the Ljung-Box Q statistics
for the residuals are acceptable. No further attempt will be made to identify a
better model. Default = FALSE

cancel numeric cancellation limit. A limit for the AR and the MA roots to be assumed
equal. This option is used in the automatic identification of the differencing
order. If the difference in moduli of an AR and an MA root (when estimating
ARIMA(1,0,1)(1,0,1) models in the second step of the automatic identification
of the differencing polynomial) is smaller than cancellation limit, the two roots
cancel out. Default = 0.1.

ub1 numeric, the first unit root limit. It is the threshold value for the initial unit
root test in the automatic differencing procedure. When one of the roots in the
estimation of the ARIMA(2,0,0)(1,0,0) plus mean model, performed in the first
step of the automatic model identification procedure, is larger than first unit root
limit in modulus, it is set equal to unity. Default = 1.030928.

ub2 numeric, the second unit root limit. When one of the roots in the estimation of
the ARIMA(1,0,1)(1,0,1) plus mean model, which is performed in the second
step of the automatic model identification procedure, is larger than second unit
root limit in modulus, it is checked if there is a common factor in the corre-
sponding AR and MA polynomials of the ARMA model that can be cancelled
(see automdl.cancel). If there is no cancellation, the AR root is set equal to
unity (i.e. the differencing order changes). Default = 1.136364.

reducecv numeric, ReduceCV. The percentage by which the outlier critical value will be
reduced when an identified model is found to have a Ljung-Box statistic with
an unacceptable confidence coefficient. The parameter should be between 0 and
1, and will only be active when automatic outlier identification is enabled. The
reduced critical value will be set to (1-ReduceCV)xCV, where CV is the original
critical value. Default = 0.14268.

ljungboxlimit numeric, the Ljung Box limit, setting the acceptance criterion for the confi-
dence intervals of the Ljung-Box Q statistic. If the LjungBox Q statistics for the
residuals of a final model is greater than Ljung Box limit, then the model is re-
jected, the outlier critical value is reduced, and model and outlier identification
(if specified) is redone with a reduced value. Default = 0.95.

tsig numeric, the arma limit. It is the threshold value for t-statistics of ARMA coef-
ficients and the constant term used for the final test of model parsimony. If the
highest order ARMA coefficient has a t-value smaller than this value in magni-
tude, the order of the model is reduced. If the constant term has a t-value smaller
than the ARMA limit in magnitude, it is removed from the set of regressors. De-
fault=1.

ubfinal (REGARIMA/X13 Specific) numeric, final unit root limit. The threshold value
for the final unit root test. If the magnitude of an AR root for the final model is

set_automodel 65

smaller than the final unit root limit, then a unit root is assumed, the order of the
AR polynomial is reduced by one and the appropriate order of the differencing
(non-seasonal, seasonal) is increased. The parameter value should be greater
than one. Default = 1.05.

checkmu (REGARIMA/X13 Specific) logical indicating if the automatic model selec-
tion checks the significance of the constant term.

mixed (REGARIMA/X13 Specific) logical. This variable controls whether ARIMA
models with non-seasonal AR and MA terms or seasonal AR and MA terms
will be considered in the automatic model identification procedure. If FALSE, a
model with AR and MA terms in both the seasonal and non-seasonal parts of
the model can be acceptable, provided there are no AR or MA terms in either
the seasonal or non-seasonal terms.

fct (REGARIMA/X13 Specific) numeric. TODO.

balanced (REGARIMA/X13 Specific) logical If TRUE, the automatic model identifica-
tion procedure will have a preference for balanced models (i.e. models for which
the order of the combined AR and differencing operators is equal to the order of
the combined MA operators). Default = FALSE

amicompare (TRAMO Specific) logical. If TRUE, the program compares the model identi-
fied by the automatic procedure to the default model (ARIMA(0, 1, 1)(0, 1, 1))
and the model with the best fit is selected. Criteria considered are residual diag-
nostics, the model structure and the number of outliers.

Details

x specification param must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

References

More information on reg-arima modelling in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

See Also

set_arima, set_transform

Examples

init_spec <- rjd3x13::x13_spec("RSA5c")
new_spec<-set_automodel(init_spec,
enabled = FALSE,
acceptdefault = TRUE)

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/

66 set_basic

set_basic Set estimation sub-span and quality check specification

Description

Function allowing to check if the series can be processed and to define a sub-span on which estima-
tion will be performed

Usage

set_basic(
x,
type = c(NA, "All", "From", "To", "Between", "Last", "First", "Excluding"),
d0 = NULL,
d1 = NULL,
n0 = 0,
n1 = 0,
preliminary.check = NA,
preprocessing = NA

)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).
type, d0, d1, n0, n1

parameters to specify the sub-span .
d0 and d1 characters in the format "YYYY-MM-DD" to specify first/last date of
the span when type equals to "From", "To" or "Between". Date corresponding
to d0 will be included in the sub-span Date corresponding to d1 will be excluded
from the sub span
n0 and n1 numeric to specify the number of periods at the beginning/end of the
series to be used for defining the sub-span (type equals to "First", "Last") or
to exclude (type equals to "Excluding").

preliminary.check

a Boolean to check the quality of the input series and exclude highly problematic
ones (e.g. the series with a number of identical observations and/or missing
values above pre-specified threshold values).

preprocessing (REGARIMA/X13 Specific) a Boolean to enable/disable the pre-processing.
Option disabled for the moment.

Details

x specification param must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

set_benchmarking 67

References

More information in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

See Also

set_estimate, set_arima

Examples

init_spec <- rjd3x13::x13_spec("RSA5c")
estimation on sub-span between two dates (date d1 is excluded)
new_spec<-set_basic(init_spec,type = "Between",d0 = "2014-01-01",
d1 = "2019-01-01", preliminary.check = TRUE, preprocessing = TRUE)
Estimation on the first 60 observations
new_spec <-set_basic(init_spec,Type="First", n0 = 60,
preliminary.check = TRUE,
preprocessing= TRUE)
Estimation on the last 60 observations
new_spec <-set_basic(init_spec,Type="Last", n1 = 60,
preliminary.check = TRUE,
preprocessing= TRUE)
Estimation excluding 60 observations at the beginning and 36 at the end of the series
new_spec <-set_basic(init_spec,Type="Excluding", n0=60, n1=36,
preliminary.check = TRUE,
preprocessing= TRUE)

set_benchmarking Set Benchmarking Specification

Description

Function allowing to perform a benchmarking procedure after the decomposition step in a seasonal
adjustment (disabled by default). Here benchmarking refers to a procedure ensuring consistency
over the year between seasonally adjusted and raw (or calendar adjusted) data, as seasonal ad-
justment can cause discrepancies between the annual totals of seasonally adjusted series and the
corresponding annual totals of raw (or calendar adjusted) series.

Usage

set_benchmarking(
x,
enabled = NA,
target = c(NA, "CalendarAdjusted", "Original"),
rho = NA,
lambda = NA,
forecast = NA,
bias = c(NA, "None")

)

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/

68 set_easter

Arguments

x the specification to customize, must be a "SPEC" class object (see details).

enabled Boolean to enable the user to perform benchmarking.

target specifies the target series for the benchmarking procedure, which can be the raw
series ("Normal"); or the series adjusted for calendar effects ("CalendarAdjusted").

rho the value of the AR(1) parameter (set between 0 and 1) in the function used for
benchmarking. Default =1.

lambda a parameter in the function used for benchmarking that relates to the weights in
the regression equation; it is typically equal to 0, 1/2 or 1.

forecast Boolean indicating if the forecasts of the seasonally adjusted series and of the
target variable (target) are used in the benchmarking computation so that the
benchmarking constrain is also applied to the forecasting period.

bias TODO

Details

x specification param must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

References

More information on benchmarking in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

Examples

init_spec <- rjd3x13::x13_spec("RSA5c")
new_spec<- set_benchmarking(init_spec,
enabled = TRUE,
target = "Normal",
rho = 0.8,
lambda = 0.5,
forecast = FALSE,
bias = "None")

set_easter Set Easter effect correction in Pre-Processing Specification

Description

Set Easter effect correction in Pre-Processing Specification

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/

set_easter 69

Usage

set_easter(
x,
enabled = NA,
julian = NA,
duration = NA,
test = c(NA, "Add", "Remove", "None"),
coef = NA,
coef.type = c(NA, "Estimated", "Fixed"),
type = c(NA, "Unused", "Standard", "IncludeEaster", "IncludeEasterMonday")

)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).

enabled a logical indicating if the program considers the Easter effect in the pre-processing
model. Default = TRUE.

julian a logical indicating if the program uses the Julian Easter (expressed in Gregorian
calendar).

duration a numeric indicating the duration of the Easter effect (length in days, between 1
and 20). Default value = 8 in REGARIMA/X-13 and 6 in TRAMO.

test defines the pre-tests for the significance of the Easter effect based on the t-
statistic (the Easter effect is considered as significant if the t-statistic is greater
than 1.96): "Add" = the Easter effect variable is not included in the initial regres-
sion model but can be added to the RegARIMA model after the test; "Remove"
= the Easter effect variable belongs to the initial regression model but can be
removed from the RegARIMA model after the test; "None" = the Easter effect
variable is not pre-tested and is included in the model.

coef to set the coefficient of the easter regressor.(Test parameter has to be set to
"None")

coef.type a character defining the easter regressor coefficient estimation procedure. Pos-
sible procedures are: "Estimated" = coefficient is estimated, "Fixed" = the
coefficients is fixed. By default the coefficient is estimated.

type (TRAMO specific) a character that specifies the presence and the length of the
Easter effect: "Unused" = the Easter effect is not considered; "Standard" = in-
fluences the period of n days strictly before Easter Sunday; "IncludeEaster" =
influences the entire period (n) up to and including Easter Sunday; "IncludeEasterMonday"
= influences the entire period (n) up to and including Easter Monday.

Details

x specification param must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

70 set_estimate

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

easter_variable, easter_day

Examples

init_spec <- rjd3x13::x13_spec("RSA5c")
new_spec<-set_easter(init_spec,
enabled = TRUE,
duration = 12,
test = "None",
type = "IncludeEasterMonday")
sa<-rjd3x13::x13(ABS$X0.2.09.10.M,new_spec)

set_estimate Set Numeric Estimation Parameters and Modelling Span

Description

Function allowing to define numeric boundaries for estimation and to define a sub-span on which
reg-arima (tramo) modelling will be performed (pre-processing step)

Usage

set_estimate(
x,
type = c(NA, "All", "From", "To", "Between", "Last", "First", "Excluding"),
d0 = NULL,
d1 = NULL,
n0 = 0,
n1 = 0,
tol = NA,
exact.ml = NA,
unit.root.limit = NA

)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).
type, d0, d1, n0, n1

parameters to specify the sub-span .
d0 and d1 characters in the format "YYYY-MM-DD" to specify first/last date of
the span when type equals to "From", "To" or "Between". Date corresponding

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction

set_estimate 71

to d0 will be included in the sub-span Date corresponding to d1 will be excluded
from the sub span

n0 and n1 numeric to specify the number of periods at the beginning/end of the
series to be used for defining the sub-span (type equals to "First", "Last") or
to exclude (type equals to "Excluding").

tol a numeric, convergence tolerance. The absolute changes in the log-likelihood
function are compared to this value to check for the convergence of the estima-
tion iterations. (The default setting is 0.0000001)

exact.ml (TRAMO specific) logical, the exact maximum likelihood estimation. If TRUE,
the program performs an exact maximum likelihood estimation. If FASLE, the
Unconditional Least Squares method is used.(Default=TRUE)

unit.root.limit

(TRAMO specific) numeric, the final unit root limit. The threshold value for
the final unit root test for identification of differencing orders. If the magnitude
of an AR root for the final model is smaller than this number, then a unit root is
assumed, the order of the AR polynomial is reduced by one and the appropriate
order of the differencing (non-seasonal, seasonal) is increased.(Default value:
0.96)

Details

x specification param must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

References

More in JDemetra+ online documentation: https://jdemetra-new-documentation.netlify.
app/

See Also

set_basic, set_arima

Examples

init_spec <- rjd3tramoseats::spec_tramoseats("rsafull")
new_spec<-set_estimate(init_spec, type= "From", d0 = "2012-01-01", tol = 0.0000002,
exact.ml = FALSE, unit.root.limit = 0.98)

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/

72 set_outlier

set_outlier Set Outlier Detection Parameters

Description

Function allowing to customize the automatic outlier detection process built in in the pre-processing
step (regarima or tramo)

Usage

set_outlier(
x,
span.type = c(NA, "All", "From", "To", "Between", "Last", "First", "Excluding"),
d0 = NULL,
d1 = NULL,
n0 = 0,
n1 = 0,
outliers.type = NA,
critical.value = NA,
tc.rate = NA,
method = c(NA, "AddOne", "AddAll"),
maxiter = NA,
lsrun = NA,
eml.est = NA

)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).
span.type, d0, d1, n0, n1

parameters to specify the sub-span on which outliers will be detected.
d0 and d1 characters in the format "YYYY-MM-DD" to specify first/last date of
the span when type equals to "From", "To" or "Between".
n0 and n1 numerics to specify the number of periods at the beginning/end of the
series to be used for the span (type equals to "From", "To") or to exclude (type
equals to "Excluding").

outliers.type vector of characters of the outliers to be automatically detected. "AO" for ad-
ditive outliers, "TC" for transitory changes "LS" for level shifts and "SO" for
seasonal outliers. For example outliers.type = c("AO", "LS") to enable the
detection of additive outliers and level shifts. If outliers.type = NULL or
outliers.type = character(), automatic detection of outliers is disabled. De-
fault value = outliers.type = c("AO", "LS", "TC")

critical.value numeric. Critical value for the outlier detection procedure. If equal to 0 the
critical value is automatically determined by the number of observations in
the outlier detection time span.(Default value = 4 REGARIMA/X13 and 3.5
in TRAMO)

set_tradingdays 73

tc.rate the rate of decay for the transitory change outlier (Default = 0.7).
method (REGARIMA/X13 Specific) determines how the program successively adds de-

tected outliers to the model. Currently, only the "AddOne" method is supported.
maxiter (REGARIMA/X13 Specific) maximum number of iterations (Default = 30).
lsrun (REGARIMA/X13 Specific) number of successive level shifts to test for cancel-

lation (Default = 0).
eml.est (TRAMO Specific) logical for the exact likelihood estimation method. It con-

trols the method applied for parameter estimation in the intermediate steps. If
TRUE, an exact likelihood estimation method is used. When FALSE, the fast
Hannan-Rissanen method is used.

Details

x specification param must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

If a Seasonal adjustment process is performed, each type of Outlier will be allocated to a pre-defined
component after the decomposition: "AO" and "TC" to the irregular, "LS" to the trend and "SO" to
seasonal component.

References

More information on outliers and other auxiliary variables in JDemetra+ online documentation:
https://jdemetra-new-documentation.netlify.app/

See Also

add_outlier, add_usrdefvar

Examples

init_spec <- rjd3tramoseats::spec_tramoseats("rsafull")
new_spec<-set_outlier(init_spec, span.type= "From", d0 = "2012-01-01",
outliers.type = c("LS", "AO"),
critical.value = 5,
tc.rate =0.85)

set_tradingdays Set Calendar effects correction in Pre-Processing Specification

Description

Function allowing to select the trading-days regressors to be used for calendar correction in the
pre-processing step of a seasonal adjustment procedure. The default is "TradingDays", with easter
specific effect enabled. (see set_easter)

All the built-in regressors are meant to correct for type of day effect but don’t take into account any
holiday. To do so user-defined regressors have to be built.

https://jdemetra-new-documentation.netlify.app/

74 set_tradingdays

Usage

set_tradingdays(
x,
option = c(NA, "TradingDays", "WorkingDays", "TD3", "TD3c", "TD4", "None",
"UserDefined"),

calendar.name = NA,
uservariable = NA,
stocktd = NA,
test = c(NA, "None", "Remove", "Add", "Separate_T", "Joint_F"),
coef = NA,
coef.type = c(NA, "Fixed", "Estimated"),
automatic = c(NA, "Unused", "FTest", "WaldTest", "Aic", "Bic"),
pftd = NA,
autoadjust = NA,
leapyear = c(NA, "LeapYear", "LengthOfPeriod", "None"),
leapyear.coef = NA,
leapyear.coef.type = c(NA, "Fixed", "Estimated")

)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).

option to specify the set of trading days regression variables: "TradingDays" = six
contrast variables, each type of day (from Monday to Saturday) vs Sundays;
"WorkingDays" = one working (week days)/non-working (week-ends) day con-
trast variable; "TD3" = two contrast variables: week-days vs Sundays and Sat-
urdays vs Sundays; "TD3c" = two contrast variables: week-days (Mondays
to Thursdays) vs Sundays and Fridays+Saturdays vs Sundays; "TD4" = three
contrast variables: week-days (Mondays to Thursdays) vs Sundays, Fridays
vs Sundays, Saturdays vs Sundays; "None" = no correction for trading days;
"UserDefined" = userdefined trading days regressors.

calendar.name name (string) of the user-defined calendar to be taken into account when gener-
ating built-in regressors set in ’option’ (if not ’UserDefined).(see examples)

uservariable a vector of characters to specify the name of user-defined calendar regressors.
When specified, automatically set option = "UserDefined". Names have to be
the same as in modelling_context, see example.

stocktd a numeric indicating the day of the month when inventories and other stock are
reported (to denote the last day of the month, set the variable to 31). When spec-
ified, automatically set option = "None". See stock_td function for details.

test defines the pre-tests for the significance of the trading day regression variables
based on the AICC statistics: "None" = the trading day variables are not pre-
tested and are included in the model;
(REGARIMA/X-13 specific)
"Add" = the trading day variables are not included in the initial regression model
but can be added to the RegARIMA model after the test; "Remove" = the trading
day variables belong to the initial regression model but can be removed from the
RegARIMA model after the test;

set_tradingdays 75

(TRAMO specific)
"Separate_T" = a t-test is applied to each trading day variable separately and
the trading day variables are included in the RegArima model if at least one t-
statistic is greater than 2.6 or if two t-statistics are greater than 2.0 (in absolute
terms); "Joint_F" = a joint F-test of significance of all the trading day variables.
The trading day effect is significant if the F statistic is greater than 0.95.

coef vector of coefficients for the trading-days regressors.
coef.type, leapyear.coef.type

vector defining if the coefficients are fixed or estimated.

automatic defines whether the calendar effects should be added to the model manually
("Unused") or automatically. During the automatic selection, the choice of the
number of calendar variables can be based on the F-Test ("FTest", TRAMO
specific), the Wald Test ("WaldTest"), or by minimizing AIC or BIC; the model
with higher F value is chosen, provided that it is higher than pftd).

pftd (TRAMO SPECIFIC) numeric. The p-value used to assess the significance of
the pre-tested calendar effects.

autoadjust a logical indicating if the program corrects automatically the raw series for the
leap year effect if the leap year regressor is significant. Only used when the data
is log transformed.

leapyear a character to specify whether or not to include the leap-year effect in the
model: "LeapYear" = leap year effect; "LengthOfPeriod" = length of period
(REGARIMA/X-13 specific), "None" = no effect included. Default: a leap year
effect regressor is included with any built-in set of trading day regressors.

leapyear.coef coefficient of the leap year regressor.

Details

x specification param must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

modelling_context, calendar_td

Examples

Pre-defined regressors
y_raw<-ABS$X0.2.09.10.M
init_spec <- rjd3x13::x13_spec("RSA5c")
new_spec<-set_tradingdays(init_spec,

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction

76 set_transform

option = "TD4",
test = "None",
coef=c(0.7,NA,0.5),
coef.type=c("Fixed","Estimated","Fixed"),
leapyear="LengthOfPeriod",
leapyear.coef=0.6)
sa<-rjd3x13::x13(y_raw,new_spec)

Pre-defined regressors based on user-defined calendar
create a calendar
BE <- national_calendar(list(
fixed_day(7,21),
special_day("NEWYEAR"),
special_day("CHRISTMAS"),
special_day("MAYDAY"),
special_day("EASTERMONDAY"),
special_day("ASCENSION"),
special_day("WHITMONDAY"),
special_day("ASSUMPTION"),
special_day("ALLSAINTSDAY"),
special_day("ARMISTICE")))

put into a context
my_context<-modelling_context(calendars = list(cal=BE))
create a specification
#init_spec <- rjd3x13::x13_spec("RSA5c")
modify the specification
new_spec<-set_tradingdays(init_spec,
option = "TradingDays", calendar.name="cal")
estimate with context
sa<-rjd3x13::x13(y_raw,new_spec, context=my_context)

User-defined regressors
init_spec <- rjd3x13::x13_spec("RSA5c")
add regressors to context
variables<-list(Monday,Tuesday, Wednesday,
Thursday, Friday, Saturday)
my_context<-modelling_context(variables=variables)
create a new spec (here default group name: r)
new_spec<-set_tradingdays(init_spec,
option = "UserDefined",
uservariable=c("r.Monday","r.Tuesday","r.Wednesday","r.Thursday","r.Friday","r.Saturday"),
test = "None")
estimate with context
sa<-rjd3x13::x13(y_raw,new_spec, context=my_context)

set_transform Set Log-level Transformation and Decomposition scheme in Pre-
Processing Specification

set_transform 77

Description

Set Log-level Transformation and Decomposition scheme in Pre-Processing Specification

Usage

set_transform(
x,
fun = c(NA, "Auto", "Log", "None"),
adjust = c(NA, "None", "LeapYear", "LengthOfPeriod"),
outliers = NA,
aicdiff = NA,
fct = NA

)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).

fun the transformation of the input series: "None" = no transformation of the series;
"Log" = takes the log of the series; "Auto" = the program tests for the log-level
specification.

adjust pre-adjustment of the input series for the length of period or leap year effects:
"None" = no adjustment; "LeapYear" = leap year effect; "LengthOfPeriod" =
length of period. Modifications of this variable are taken into account only when
function = "Log".

outliers Boolean indicating if a pre-correction for large outliers (AO and LS only) should
be done in the test for the log-level specification (fun = "Auto"). By default to
FALSE.

aicdiff (REGARIMA/X-13 specific) a numeric defining the difference in AICC needed
to accept no transformation when the automatic transformation selection is cho-
sen (considered only when fun = "Auto"). Default= -2.

fct (TRAMO specific) numeric controlling the bias in the log/level pre-test: transform.fct>
1 favors levels, transform.fct< 1 favors logs. Considered only when fun =
"Auto".

Details

x specification param must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

References

More information in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/

78 single_day

See Also

set_outlier, set_tradingdays

Examples

init_spec <- rjd3x13::x13_spec("RSA5c")
new_spec<- set_transform(init_spec,
fun = "Log",
outliers = TRUE)
sa<-rjd3x13::x13(ABS$X0.2.09.10.M,new_spec)

single_day Set a holiday on a Single Day

Description

Allows to set a holiday as a once-occurring event.

Usage

single_day(date, weight = 1)

Arguments

date the date of the holiday in the format "YYYY-MM-DD".

weight weight associated to the holiday.

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

national_calendar, fixed_day,special_day,easter_day

Examples

single_day("1999-03-19")

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction

special_day 79

special_day List of Pre-Defined Holidays to choose from

Description

Allows to define a holiday choosing from a list of pre-specified events, equivalent to use fixed_day
or easter_day functions.

Usage

special_day(event, offset = 0, weight = 1, validity = NULL)

Arguments

event the event to add (see details).

offset The position of the holiday in relation to the selected pre-specified holiday mea-
sured in days (can be positive or negative). By default offset = 0.

weight weight associated to the holiday.

validity validity period: either NULL (full sample) or a named list with "start" and/or
"end" dates in the format "YYYY-MM-DD".

Details

Possible values :

NEWYEAR Fixed holiday, falls on January, 1st.
SHROVEMONDAY Moving holiday, falls on the Monday before Ash Wednesday (48 days before Easter Sunday).
SHROVETUESDAY Moving holiday, falls on the Tuesday before Ash Wednesday (47 days before Easter Sunday).
ASHWEDNESDAY Moving holiday, occurring 46 days before Easter Sunday.
MAUNDYTHURSDAY Moving holiday, falls on the Thursday before Easter.
GOODFRIDAY Moving holiday, falls on the Friday before Easter.
EASTER Moving holiday, falls between March 22nd and April 25th.
EASTERMONDAY Moving holiday, falls on the day after Easter.
ASCENSION Moving holiday, celebrated on a Thursday, 39 days after Easter.
PENTECOST Moving holiday, celebrated 49 days after Easter Sunday.
WHITMONDAY Moving holiday, falling on the day after Pentecost.
CORPUSCHRISTI Moving holiday, celebrated 60 days after Easter Sunday.
JULIANEASTER
MAYDAY Fixed holiday, falls on May, 1st.
ASSUMPTION Fixed holiday, falls on August, 15th.
HALLOWEEN Fixed holiday, falls on October, 31st.
ALLSAINTSDAY Fixed holiday, falls on November, 1st.
ARMISTICE Fixed holiday, falls on November, 11th.
CHRISTMAS Fixed holiday, falls on December, 25th.

80 statisticaltest

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

national_calendar, fixed_day, easter_day

Examples

To add Easter Monday
special_day("EASTERMONDAY")
To define a holiday for the day after Christmas, with validity and weight
special_day("CHRISTMAS", offset = 1, weight = 0.8,
validity = list(start="2000-01-01", end = "2020-12-01"))

statisticaltest Generic Function For ’JDemetra+’ Tests

Description

Generic function to format the results of ’JDemetra+’ tests.

Usage

statisticaltest(val, pval, dist = NULL)

S3 method for class 'JD3_TEST'
print(x, details = FALSE, ...)

Arguments

val, pval, dist statistical parameters.

x the object to print.

details boolean indicating if the statistical distribution should be printed.

... further arguments (ignored).

Value

c("JD3_TEST", "JD3") object that is a list of three parameters:

• value the statistical value of the test.

• pvalue the p-value of the test.

• distribution the statistical distribution used.

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction

stock_td 81

Examples

udr_test = testofupdownruns(random_t(5, 1000))
udr_test # default print
print(udr_test, details = TRUE) # with the distribution

stock_td Trading day Regressor for Stock series

Description

Allows to generate a specific regressor for correcting trading days effects in Stock series.

Usage

stock_td(frequency, start, length, s, w = 31)

Arguments

frequency Frequency of the series, number of periods per year (12,4,3,2..)

start, length First date (array with the first year and the first period) (for instance c(1980,
1)) and number of periods of the output variables. Can also be provided with
the s argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

w indicates day of the month when inventories and other stocks are reported. (to
denote the last day of the month enter 31).

Details

The regressor will have the value -1 if the w-th day is a Sunday, 1 if it is a Monday as 0 otherwise.

Value

Time series (object of class c("ts","mts","matrix")).

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

calendar_td

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction

82 td

td Trading day regressors without holidays

Description

Allows to generate trading day regressors (as many as defined groups), taking into account 7 or
less different types of days, from Monday to Sunday, but no specific holidays. Regressors are not
corrected for long term mean.

Usage

td(
frequency,
start,
length,
s,
groups = c(1, 2, 3, 4, 5, 6, 0),
contrasts = TRUE

)

Arguments

frequency Frequency of the series, number of periods per year (12,4,3,2..)

start, length First date (array with the first year and the first period) (for instance c(1980,
1)) and number of periods of the output variables. Can also be provided with
the s argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

groups Groups of days. The length of the array must be 7. It indicates to what group
each week day belongs. The first item corresponds to Mondays and the last one
to Sundays. The group used for contrasts (usually Sundays) is identified by 0.
The other groups are identified by 1, 2,... n (<= 6). For instance, usual trading
days are defined by c(1,2,3,4,5,6,0), week days by c(1,1,1,1,1,0,0), week days,
Saturdays, Sundays by c(1,1,1,1,1,2,0) etc...

contrasts If true, the variables are defined by contrasts with the 0-group. Otherwise, raw
number of days is provided.

Details

Aggregated values for monthly or quarterly are the numbers of days belonging to a given group.
Contrasts are the differences between the number of days in a given group (1 to 6) and the number
of days in the reference group (0).

Value

Time series (object of class c("ts","mts","matrix")) corresponding to each group, starting with
the 0-group (contrasts = FALSE) or the 1-group (contrasts = TRUE).

td_canovahansen 83

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

calendar_td

Examples

Monthly regressors for Trading Days: each type of day is different
contrasts to Sundays (6 series)
regs_td<- td(12,c(2020,1),60, groups = c(1, 2, 3, 4, 5, 6, 0), contrasts = TRUE)
Quarterly regressors for Working Days: week days are similar
contrasts to week-end days (1 series)
regs_wd<- td(4,c(2020,1),60, groups = c(1, 1, 1, 1, 1, 0, 0), contrasts = TRUE)

td_canovahansen Canova-Hansen Trading Days test

Description

Canova-Hansen Trading Days test

Usage

td_canovahansen(
s,
differencing,
kernel = c("Bartlett", "Square", "Welch", "Tukey", "Hamming", "Parzen"),
order = NA

)

Arguments

s a ts object that corresponds to the input time series to test.

differencing differencing lags.

order

Examples

s<-log(ABS$X0.2.20.10.M)
td_canovahansen(s, c(1,12))

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction

84 td_f

td_f Residual Trading Days Test

Description

Residual Trading Days Test

Usage

td_f(
s,
model = c("D1", "DY", "DYD1", "WN", "AIRLINE", "R011", "R100"),
nyears = 0

)

Arguments

s a ts object that corresponds to the input time series to test.
model the model to use for the residuals. See details.
nyears integer that corresponds to the length of the sub series, starting from the end of

the series, to be used for the test: in number of periods (positive value) or years
(negative values). By default (nyears = 0), the entire sample is used.

Details

The function performs a residual seasonality test that is a joint F-Test on the coefficients of trading
days regressors. Several specifications can be used on the model:

• model = "WN" the following model is used:

yt − ȳ = βTDt + εt

• model = "D1" (the default) the following model is used:

∆yt −∆y = β∆TDt + εt

• model = "DY" the following model is used:

∆syt −∆sy = β∆sTDt + εt

• model = "DYD1" the following model is used:

∆s∆yt −∆s∆y = β∆s∆TDt + εt

• model = "AIRLINE" the following model is used:

yt = βTDt + εt with εt ∼ ARIMA(0, 1, 1)(0, 1, 1)

• model = "R011" the following model is used:

yt = βTDt + εt with εt ∼ ARIMA(0, 1, 1)

• model = "R100" the following model is used:

yt = α0 + α1yt−1 + βTDt + εt

to_ts 85

Examples

td_f(ABS$X0.2.09.10.M)

to_ts Title

Description

Title

Usage

to_ts(source, id, type = "All")

Arguments

type

to_tscollection Title

Description

Title

Usage

to_tscollection(source, id, type = "All")

Arguments

type

86 trigonometric_variables

trigonometric_variables

Trigonometric variables

Description

Computes trigonometric variables at different frequencies.

Usage

trigonometric_variables(frequency, start, length, s, seasonal_frequency = NULL)

Arguments

frequency Frequency of the series, number of periods per year (12,4,3,2..)

start, length First date (array with the first year and the first period) (for instance c(1980,
1)) and number of periods of the output variables. Can also be provided with
the s argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

seasonal_frequency

the seasonal frequencies. By default the fundamental seasonal frequency and all
the harmonics are used.

Details

Denote by P the value of frequency (= the period) and f1, ..., fn the frequencies provides by
seasonal_frequency (if seasonal_frequency = NULL then n = ⌊P/2⌋ and fi=i).

trigonometric_variables returns a matrix of size length× (2n).

For each date t associated to the period m (m ∈ [1, P]), the columns 2i and 2i− 1 are equal to:

cos

(
2π

P
×m× fi

)
and sin

(
2π

P
×m× fi

)
Take for example the case when the first date (date) is a January, frequency = 12 (monthly time
series), length = 12 and seasonal_frequency = NULL. The first frequency, λ1 = 2π/12 represents
the fundamental seasonal frequency and the other frequencies (λ2 = 2π/12×2, ..., λ6 = 2π/12×6)
are the five harmonics. The output matrix will be equal to:

cos(λ1) sin(λ1) · · · cos(λ6) sin(λ6)
cos(λ1 × 2) sin(λ1 × 2) · · · cos(λ6 × 2) sin(λ6 × 2)

...
... · · ·

...
...

cos(λ1 × 12) sin(λ1 × 12) · · · cos(λ6 × 12) sin(λ6 × 12)



tsdata_of 87

tsdata_of Title

Description

Title

Usage

tsdata_of(values, dates)

Arguments

values Values of the time series

dates Dates of the values (could be any date inside the considered period)

Value

A ts object. The frequency will be identified automatically and missing values will be added in need
be. The identified frequency will be the lowest frequency that match the figures. The provided data
can contain missing values (NA)

Examples

Annual series
s<-tsdata_of(c(1,2,3,4), c("1990-01-01", "1995-01-01", "1996-01-01", "2000-11-01"))
Quarterly series
t<-tsdata_of(c(1,2,3,NA,4), c("1990-01-01", "1995-01-01", "1996-01-01", "2000-08-01", "2000-11-01"))

tsmoniker Title

Description

Title

Usage

tsmoniker(source, id)

Arguments

source Source of the time series.

id Id of the time series.

88 ts_interpolate

ts_adjust Multiplicative adjustment of a time series for leap year / length of
periods

Description

Multiplicative adjustment of a time series for leap year / length of periods

Usage

ts_adjust(s, method = c("LeapYear", "LengthOfPeriod"), reverse = FALSE)

Arguments

s The original time series

method LeapYear: correction for leap year LengthOfPeriod: correction for the length of
periods

reverse Adjustment or reverse operation

Value

The interpolated series

Examples

y <- ABS$X0.2.09.10.M
ts_adjust(y)
with reverse we can find the
all.equal(ts_adjust(ts_adjust(y), reverse = TRUE), y)

ts_interpolate Interpolation of a time series with missing values

Description

Interpolation of a time series with missing values

Usage

ts_interpolate(s, method = c("airline", "average"))

Arguments

s The original time series

method airline: interpolation through an estimated airline model average: interpolation
using the average of the previous and next non missing values

ucarima_canonical 89

Value

The interpolated series

ucarima_canonical Makes a UCARIMA model canonical; more specifically, put all the
noise of the components in one dedicated component

Description

Makes a UCARIMA model canonical; more specifically, put all the noise of the components in one
dedicated component

Usage

ucarima_canonical(ucm, cmp = 0, adjust = TRUE)

Arguments

ucm An UCARIMA model returned by ucarima_model().

cmp Index of the component that will contain the noises; 0 if a new component with
all the noises will be added to the model

adjust If TRUE, some noise could be added to the model to ensure that all the compo-
nents has positive (pseudo-)spectrum

Value

A new UCARIMA model

Examples

mod1 <- arima_model("trend", delta = c(1,-2,1))
mod2 <- arima_model("noise", var = 1600)
hp <- ucarima_model(components=list(mod1, mod2))
hpc <- ucarima_canonical(hp, cmp=2)

90 ucarima_model

ucarima_estimate Estimate UCARIMA Model

Description

Estimate UCARIMA Model

Usage

ucarima_estimate(x, ucm, stdev = TRUE)

Arguments

x Univariate time series

ucm An UCARIMA model returned by ucarima_model().

stdev TRUE if standard deviation of the components are computed

Value

A matrix containing the different components and their standard deviations if stdev is TRUE.

Examples

mod1 <- arima_model("trend", delta = c(1,-2,1))
mod2 <- arima_model("noise", var = 16)
hp <- ucarima_model(components=list(mod1, mod2))
s <- log(aggregate(retail$AutomobileDealers))
all <- ucarima_estimate(s, hp, stdev=TRUE)
plot(s, type = 'l')
t <- ts(all[,1], frequency = frequency(s), start = start(s))
lines(t, col='blue')

ucarima_model Creates an UCARIMA model, which is composed of ARIMA models
with independent innovations.

Description

Creates an UCARIMA model, which is composed of ARIMA models with independent innovations.

Usage

ucarima_model(model = NULL, components, complements = NULL, checkmodel = FALSE)

ucarima_wk 91

Arguments

model The reduced model. Usually not provided.

components The ARIMA models representing the components

complements Complements of (some) components. Usually not provided

checkmodel When the model is provided and checkmodel is TRUE, we check that it indeed
corresponds to the reduced form of the components; similar controls are applied
on complements. Currently not implemented

Value

A list with the reduced model, the components and their complements

Examples

mod1 <- arima_model("trend", delta = c(1,-2,1))
mod2 <- arima_model("noise", var = 1600)
hp<-ucarima_model(components=list(mod1, mod2))
print(hp$model)

ucarima_wk Wiener Kolmogorov Estimators

Description

Wiener Kolmogorov Estimators

Usage

ucarima_wk(ucm, cmp, signal = TRUE, nspectrum = 601, nwk = 300)

Arguments

ucm An UCARIMA model returned by ucarima_model().

cmp Index of the component for which we want to compute the filter

signal TRUE for the signal (component), FALSE for the noise (complement)

nspectrum Number of points used to compute the (pseudo-) spectrum of the estimator

nwk Number of weights of the wiener-kolmogorov filter returned in the result

Value

A list with the (pseudo-)spectrum, the weights of the filter and the squared-gain function (with the
same number of points as the spectrum)

92 weighted_calendar

Examples

mod1 <- arima_model("trend", delta = c(1,-2,1))
mod2 <- arima_model("noise", var = 1600)
hp<-ucarima_model(components=list(mod1, mod2))
wk1<-ucarima_wk(hp, 1, nwk=50)
wk2<-ucarima_wk(hp, 2)
plot(wk1$filter, type='h')

weighted_calendar Create a Composite Calendar

Description

Allows to combine two or more calendars into one calendar, weighting all the holidays of each of
them.

Usage

weighted_calendar(calendars, weights)

Arguments

calendars list of calendars.

weights vector of weights associated to each calendar.

Details

Composite calendars are useful for a series that including data from more than one country/region.
They can be used, for example, to create the calendar for the European Union or to create the
national calendar for a country, in which regional holidays are celebrated. For example, in Ger-
many public holidays are determined by the federal states. Therefore, Epiphany is celebrated only
in Baden-Wurttemberg, Bavaria and in Saxony-Anhalt, while from 1994 Day of Repentance and
Prayer is celebrated only in Saxony.

Value

returns an object of class c("JD3_WEIGHTEDCALENDAR","JD3_CALENDARDEFINITION")

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

national_calendar, chained_calendar

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction

weighted_calendar 93

Examples

Belgium <- national_calendar(list(special_day("NEWYEAR"),fixed_day(7,21)))
France <- national_calendar(list(special_day("NEWYEAR"),fixed_day(7,14)))
composite_calendar<- weighted_calendar(list(France,Belgium), weights = c(1,2))

Index

∗ datasets
.r2jd_tsdata, 4

.enum_extract (.r2jd_tsdata), 4

.enum_of (.r2jd_tsdata), 4

.enum_sextract (.r2jd_tsdata), 4

.enum_sof (.r2jd_tsdata), 4

.jd2p_calendars (.r2jd_tsdata), 4

.jd2p_context (.r2jd_tsdata), 4

.jd2p_variables (.r2jd_tsdata), 4

.jd2r_calendars (.r2jd_tsdata), 4

.jd2r_lts (.r2jd_tsdata), 4

.jd2r_matrix (.r2jd_tsdata), 4

.jd2r_modellingcontext (.r2jd_tsdata), 4

.jd2r_mts (.r2jd_tsdata), 4

.jd2r_ts (.r2jd_tsdata), 4

.jd2r_tscollection (.r2jd_tsdata), 4

.jd2r_tsdata (.r2jd_tsdata), 4

.jd2r_ucarima (.r2jd_tsdata), 4

.jd2r_variables (.r2jd_tsdata), 4

.jd3_object (.r2jd_tsdata), 4

.jdomain (.r2jd_tsdata), 4

.p2jd_calendar (.r2jd_tsdata), 4

.p2jd_calendars (.r2jd_tsdata), 4

.p2jd_context (.r2jd_tsdata), 4

.p2jd_variables (.r2jd_tsdata), 4

.p2r_arima (.r2jd_tsdata), 4

.p2r_calendars (.r2jd_tsdata), 4

.p2r_context (.r2jd_tsdata), 4

.p2r_datasupplier (.r2jd_tsdata), 4

.p2r_datasuppliers (.r2jd_tsdata), 4

.p2r_date (.r2jd_tsdata), 4

.p2r_iv (.r2jd_tsdata), 4

.p2r_ivs (.r2jd_tsdata), 4

.p2r_likelihood (.r2jd_tsdata), 4

.p2r_matrix (.r2jd_tsdata), 4

.p2r_metadata (.r2jd_tsdata), 4

.p2r_moniker (.r2jd_tsdata), 4

.p2r_outliers (.r2jd_tsdata), 4

.p2r_parameter (.r2jd_tsdata), 4

.p2r_parameters (.r2jd_tsdata), 4

.p2r_parameters_estimation
(.r2jd_tsdata), 4

.p2r_parameters_rslt (.r2jd_tsdata), 4

.p2r_parameters_rsltx (.r2jd_tsdata), 4

.p2r_ramps (.r2jd_tsdata), 4

.p2r_regarima_rslts (.r2jd_tsdata), 4

.p2r_sa_decomposition (.r2jd_tsdata), 4

.p2r_sa_diagnostics (.r2jd_tsdata), 4

.p2r_sequences (.r2jd_tsdata), 4

.p2r_span (.r2jd_tsdata), 4

.p2r_spec_benchmarking (.r2jd_tsdata), 4

.p2r_spec_sarima (.r2jd_tsdata), 4

.p2r_test (.r2jd_tsdata), 4

.p2r_ts (.r2jd_tsdata), 4

.p2r_tscollection (.r2jd_tsdata), 4

.p2r_tsdata (.r2jd_tsdata), 4

.p2r_ucarima (.r2jd_tsdata), 4

.p2r_uservars (.r2jd_tsdata), 4

.p2r_variables (.r2jd_tsdata), 4

.proc_bool (.r2jd_tsdata), 4

.proc_data (.r2jd_tsdata), 4

.proc_desc (.r2jd_tsdata), 4

.proc_dictionary (.r2jd_tsdata), 4

.proc_dictionary2 (.r2jd_tsdata), 4

.proc_int (.r2jd_tsdata), 4

.proc_likelihood (.r2jd_tsdata), 4

.proc_matrix (.r2jd_tsdata), 4

.proc_numeric (.r2jd_tsdata), 4

.proc_parameter (.r2jd_tsdata), 4

.proc_parameters (.r2jd_tsdata), 4

.proc_str (.r2jd_tsdata), 4

.proc_test (.r2jd_tsdata), 4

.proc_ts (.r2jd_tsdata), 4

.proc_vector (.r2jd_tsdata), 4

.r2jd_calendars (.r2jd_tsdata), 4

.r2jd_make_ts (.r2jd_tsdata), 4

.r2jd_make_tscollection (.r2jd_tsdata),
4

94

INDEX 95

.r2jd_matrix (.r2jd_tsdata), 4

.r2jd_modellingcontext (.r2jd_tsdata), 4

.r2jd_sarima (.r2jd_tsdata), 4

.r2jd_tmp_ts (.r2jd_tsdata), 4

.r2jd_ts (.r2jd_tsdata), 4

.r2jd_tscollection (.r2jd_tsdata), 4

.r2jd_tsdata, 4

.r2jd_tsdomain (.r2jd_tsdata), 4

.r2jd_variables (.r2jd_tsdata), 4

.r2p_calendar (.r2jd_tsdata), 4

.r2p_calendars (.r2jd_tsdata), 4

.r2p_context (.r2jd_tsdata), 4

.r2p_datasupplier (.r2jd_tsdata), 4

.r2p_datasuppliers (.r2jd_tsdata), 4

.r2p_date (.r2jd_tsdata), 4

.r2p_iv (.r2jd_tsdata), 4

.r2p_ivs (.r2jd_tsdata), 4

.r2p_lparameters (.r2jd_tsdata), 4

.r2p_metadata (.r2jd_tsdata), 4

.r2p_moniker (.r2jd_tsdata), 4

.r2p_outliers (.r2jd_tsdata), 4

.r2p_parameter (.r2jd_tsdata), 4

.r2p_parameters (.r2jd_tsdata), 4

.r2p_ramps (.r2jd_tsdata), 4

.r2p_sequences (.r2jd_tsdata), 4

.r2p_span (.r2jd_tsdata), 4

.r2p_spec_benchmarking (.r2jd_tsdata), 4

.r2p_spec_sarima (.r2jd_tsdata), 4

.r2p_ts (.r2jd_tsdata), 4

.r2p_tscollection (.r2jd_tsdata), 4

.r2p_tsdata (.r2jd_tsdata), 4

.r2p_uservars (.r2jd_tsdata), 4

add_outlier, 9, 73
add_ramp (add_outlier), 9
add_usrdefvar, 10, 10, 33, 34, 40, 73
aggregate, 12
ao_variable (outliers_variables), 43
arima_difference, 13
arima_model, 14
arima_model(), 14, 15
arima_properties, 14
arima_sum, 15
autocorrelations, 16
autocorrelations_inverse

(autocorrelations), 16
autocorrelations_partial

(autocorrelations), 16

bowmanshenton (normality_tests), 42

calendar_td, 16, 30, 33, 39, 75, 81, 83
cdf_chi2 (density_chi2), 21
cdf_gamma (density_gamma), 22
cdf_inverse_gamma

(density_inverse_gamma), 22
cdf_inverse_gaussian

(density_inverse_gaussian), 23
cdf_t (density_t), 23
chained_calendar, 18, 41, 92
chi2distribution (density_chi2), 21
clean_extremities, 19
compare_annual_totals, 20

data_to_ts, 20
DATE_MAX (.r2jd_tsdata), 4
DATE_MIN (.r2jd_tsdata), 4
daysOf, 21
density_chi2, 21
density_gamma, 22
density_inverse_gamma, 22
density_inverse_gaussian, 23
density_t, 23
deprecated-rjd3toolkit, 24
diagnostics, 24
dictionary, 25
differences, 25
differencing_fast, 26
do_stationary, 27
doornikhansen (normality_tests), 42

easter_dates, 27
easter_day, 28, 28, 30, 31, 70, 78, 80
easter_variable, 29, 70

fixed_day, 29, 30, 31, 78, 80
fixed_week_day, 29, 31

gammadistribution (density_gamma), 22

holidays, 32

intervention_variable, 10, 11, 33, 40
invgammadistribution

(density_inverse_gamma), 22
invgaussiandistribution

(density_inverse_gaussian), 23

jarquebera (normality_tests), 42

96 INDEX

jd3_print, 35
jd3_utilities (.r2jd_tsdata), 4
julianeaster_variable

(easter_variable), 29

kurtosis (normality_tests), 42

likelihood, 36
ljungbox, 36
long_term_mean, 37
lp_variable, 38
ls_variable (outliers_variables), 43

mad, 39
modelling_context, 10, 33, 34, 40, 74, 75

national_calendar, 18, 19, 28–32, 41, 78,
80, 92

normality_tests, 42

outliers_variables, 43

periodic.contrasts (periodic.dummies),
44

periodic.dummies, 44
periodic_splines, 45
plot.JD3_SADECOMPOSITION

(sadecomposition), 50
print.calendars, 45
print.JD3_ARIMA (jd3_print), 35
print.JD3_CALENDAR (print.calendars), 45
print.JD3_EASTERDAY (print.calendars),

45
print.JD3_FIXEDDAY (print.calendars), 45
print.JD3_FIXEDWEEKDAY

(print.calendars), 45
print.JD3_LIKELIHOOD (jd3_print), 35
print.JD3_REGARIMA_RSLTS (jd3_print), 35
print.JD3_SADECOMPOSITION

(sadecomposition), 50
print.JD3_SARIMA (jd3_print), 35
print.JD3_SARIMA_ESTIMATION

(jd3_print), 35
print.JD3_SINGLEDAY (print.calendars),

45
print.JD3_SPAN (jd3_print), 35
print.JD3_SPECIALDAY (print.calendars),

45
print.JD3_TEST (statisticaltest), 80
print.JD3_UCARIMA (jd3_print), 35

r2jd_calendarts, 46
ramp_variable, 47
random_chi2 (density_chi2), 21
random_gamma (density_gamma), 22
random_inverse_gamma

(density_inverse_gamma), 22
random_inverse_gaussian

(density_inverse_gaussian), 23
random_t (density_t), 23
rangemean_tstat, 48
reload_dictionaries, 49
remove_outlier (add_outlier), 9
remove_ramp (add_outlier), 9
result (dictionary), 25
runstests, 49

sa.decomposition
(deprecated-rjd3toolkit), 24

sa_decomposition (sadecomposition), 50
sa_decomposition(), 24
sa_preprocessing, 55
sadecomposition, 50
sarima_decompose, 51
sarima_estimate, 52
sarima_hannan_rissanen, 52
sarima_model, 53
sarima_model(), 54, 55
sarima_properties, 54
sarima_random, 55
seasonality_canovahansen, 56
seasonality_canovahansen_trigs, 57
seasonality_combined, 57
seasonality_f, 58
seasonality_friedman, 59
seasonality_kruskalwallis, 59
seasonality_periodogram, 60
seasonality_qs, 61
set_arima, 61, 65, 67, 71
set_automodel, 63, 63
set_basic, 66, 71
set_benchmarking, 67
set_easter, 68, 73
set_estimate, 67, 70
set_outlier, 72, 78
set_tradingdays, 10, 11, 73, 78
set_transform, 63, 65, 76
single_day, 78
skewness (normality_tests), 42
so_variable (outliers_variables), 43

INDEX 97

special_day, 29–31, 78, 79
statisticaltest, 42, 80
statisticaltest(), 37, 50, 58–61
stock_td, 81
studentdistribution (density_t), 23

tc_variable (outliers_variables), 43
td, 18, 82
td_canovahansen, 83
td_f, 84
testofruns (runstests), 49
testofupdownruns (runstests), 49
to_ts, 85
to_tscollection, 85
trigonometric_variables, 86
ts_adjust, 88
ts_interpolate, 88
tsdata_of, 87
tsmoniker, 87

ucarima_canonical, 89
ucarima_estimate, 90
ucarima_model, 90
ucarima_model(), 89–91
ucarima_wk, 91
user_defined (dictionary), 25

weighted_calendar, 19, 32, 41, 92

	.r2jd_tsdata
	add_outlier
	add_usrdefvar
	aggregate
	arima_difference
	arima_model
	arima_properties
	arima_sum
	autocorrelations
	calendar_td
	chained_calendar
	clean_extremities
	compare_annual_totals
	data_to_ts
	daysOf
	density_chi2
	density_gamma
	density_inverse_gamma
	density_inverse_gaussian
	density_t
	deprecated-rjd3toolkit
	diagnostics
	dictionary
	differences
	differencing_fast
	do_stationary
	easter_dates
	easter_day
	easter_variable
	fixed_day
	fixed_week_day
	holidays
	intervention_variable
	jd3_print
	likelihood
	ljungbox
	long_term_mean
	lp_variable
	mad
	modelling_context
	national_calendar
	normality_tests
	outliers_variables
	periodic.dummies
	periodic_splines
	print.calendars
	r2jd_calendarts
	ramp_variable
	rangemean_tstat
	reload_dictionaries
	runstests
	sadecomposition
	sarima_decompose
	sarima_estimate
	sarima_hannan_rissanen
	sarima_model
	sarima_properties
	sarima_random
	sa_preprocessing
	seasonality_canovahansen
	seasonality_canovahansen_trigs
	seasonality_combined
	seasonality_f
	seasonality_friedman
	seasonality_kruskalwallis
	seasonality_periodogram
	seasonality_qs
	set_arima
	set_automodel
	set_basic
	set_benchmarking
	set_easter
	set_estimate
	set_outlier
	set_tradingdays
	set_transform
	single_day
	special_day
	statisticaltest
	stock_td
	td
	td_canovahansen
	td_f
	to_ts
	to_tscollection
	trigonometric_variables
	tsdata_of
	tsmoniker
	ts_adjust
	ts_interpolate
	ucarima_canonical
	ucarima_estimate
	ucarima_model
	ucarima_wk
	weighted_calendar
	Index

