Package: rjd3filters 2.1.1.9000

Alain Quartier-la-Tente

rjd3filters: Trend-Cycle Extraction with Linear Filters based on JDemetra+ v3.x

This package provides functions to build and apply symmetric and asymmetric moving averages (= linear filters) for trend-cycle extraction. In particular, it implements several modern approaches for real-time estimates from the viewpoint of revisions and time delay in detecting turning points. It includes the local polynomial approach of Proietti and Luati (2008), the Reproducing Kernel Hilbert Space (RKHS) of Dagum and Bianconcini (2008) and the Fidelity-Smoothness-Timeliness approach of Grun-Rehomme, Guggemos, and Ladiray (2018). It is based on Java libraries developped in 'JDemetra+' (<https://github.com/jdemetra>), time series analysis software.

Authors:Jean Palate [aut], Alain Quartier-la-Tente [aut, cre], Tanguy Barthelemy [ctb], Anna Smyk [ctb]

rjd3filters_2.1.1.9000.tar.gz
rjd3filters_2.1.1.9000.zip(r-4.5)rjd3filters_2.1.1.9000.zip(r-4.4)rjd3filters_2.1.1.9000.zip(r-4.3)
rjd3filters_2.1.1.9000.tgz(r-4.4-any)rjd3filters_2.1.1.9000.tgz(r-4.3-any)
rjd3filters_2.1.1.9000.tar.gz(r-4.5-noble)rjd3filters_2.1.1.9000.tar.gz(r-4.4-noble)
rjd3filters_2.1.1.9000.tgz(r-4.4-emscripten)
rjd3filters.pdf |rjd3filters.html
rjd3filters/json (API)
NEWS

# Install 'rjd3filters' in R:
install.packages('rjd3filters', repos = c('https://tanguybarthelemy.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/rjdverse/rjd3filters/issues

Uses libs:
  • openjdk– OpenJDK Java runtime, using Hotspot JIT
Datasets:
  • retailsa - Seasonally Adjusted Retail Sales

On CRAN:

5.32 score 3 stars 3 packages 77 scripts 42 exports 7 dependencies

Last updated 1 months agofrom:ab8eb43207. Checks:OK: 5 NOTE: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 15 2024
R-4.5-winOKNov 15 2024
R-4.5-linuxOKNov 15 2024
R-4.4-winNOTENov 15 2024
R-4.4-macNOTENov 15 2024
R-4.3-winOKNov 15 2024
R-4.3-macOKNov 15 2024

Exports:.jd2r_finitefiltersconfint_filtercpcross_validationcvcvedfa_filterdiagnostic_matrixfilterfinite_filtersfstfst_filterget_kernelget_moving_averageget_properties_functionimplicit_forecastimpute_last_obsis_symmetricis.finite_filtersis.moving_averagelocalpolynomialsloocvelower_boundlp_filtermirrormmsre_filtermoving_averagemseplot_coefplot_gainplot_phasepolynomial_matrixrkhs_filterrkhs_kernelrkhs_optimal_bwrkhs_optimization_funrtshowsimple_mato_seasonalupper_boundvar_estimator

Dependencies:backportscheckmateMASSRcpprJavarjd3toolkitRProtoBuf

Readme and manuals

Help Manual

Help pageTopics
Confidence intervalsconfint_filter
Deprecated functioncross_validation deprecated-rjd3filters
Direct Filter Approachdfa_filter
Compute quality criteria for asymmetric filtersdiagnostic_matrix
Diagnostics and goodness of fit of filtered seriescp cv cve diagnostics-fit loocve rt
Linear Filtering on a Time Seriesfilter
Operations on Filters*,ANY,finite_filters-method *,ANY,moving_average-method *,finite_filters,ANY-method *,finite_filters,finite_filters-method *,finite_filters,moving_average-method *,finite_filters,numeric-method *,moving_average,ANY-method *,moving_average,finite_filters-method *,moving_average,moving_average-method *,moving_average,numeric-method *,numeric,moving_average-method +,finite_filters,finite_filters-method +,finite_filters,missing-method +,finite_filters,moving_average-method +,moving_average,finite_filters-method +,moving_average,missing-method +,moving_average,moving_average-method +,moving_average,numeric-method +,numeric,finite_filters-method +,numeric,moving_average-method -,finite_filters,finite_filters-method -,finite_filters,missing-method -,finite_filters,moving_average-method -,finite_filters,numeric-method -,moving_average,finite_filters-method -,moving_average,missing-method -,moving_average,moving_average-method -,moving_average,numeric-method -,numeric,finite_filters-method -,numeric,moving_average-method /,finite_filters,numeric-method /,moving_average,numeric-method cbind.moving_average filters_operations rbind.moving_average sum.moving_average [,finite_filters,ANY-method [,finite_filters,missing-method [,moving_average,logical-method [,moving_average,numeric-method [<-,moving_average,ANY,missing,numeric-method ^,finite_filters,numeric-method ^,moving_average,numeric-method
Manipulating Finite Filtersfinite_filters is.finite_filters show,finite_filters-method
FST criteriafst
Estimation of a filter using the Fidelity-Smoothness-Timeliness criteriafst_filter
Get the coefficients of a kernelget_kernel
Get Moving Averages from ARIMA modelget_moving_average
Get properties of filtersget_properties_function
Retrieve implicit forecasts corresponding to the asymmetric filtersimplicit_forecast
Impute Incomplete Finite Filtersimpute_last_obs
Apply Local Polynomials Filterslocalpolynomials
Local Polynomials Filterslp_filter
Mean Square Revision Error (mmsre) filtermmsre_filter
Manipulation of moving averagesis.moving_average is_symmetric length.moving_average lower_bound mirror moving_average rev.moving_average show,moving_average-method to_seasonal upper_bound
Accuracy/smoothness/timeliness criteria through spectral decompositionmse
Plots filters propertiesplot_coef plot_coef.default plot_coef.finite_filters plot_coef.moving_average plot_filters plot_gain plot_gain.finite_filters plot_gain.moving_average plot_phase plot_phase.finite_filters plot_phase.moving_average
Create polynomial matrixpolynomial_matrix
Seasonally Adjusted Retail Salesretailsa
Reproducing Kernel Hilbert Space (RKHS) Filtersrkhs_filter
Get RKHS kernel functionrkhs_kernel
Optimal Bandwith of Reproducing Kernel Hilbert Space (RKHS) Filtersrkhs_optimal_bw
Optimization Function of Reproducing Kernel Hilbert Space (RKHS) Filtersrkhs_optimization_fun
Simple Moving Averagesimple_ma
Variance Estimatorvar_estimator